
Verification of solid state interlocking programs

Phillip James, Andy Lawrence
Faron Moller, Markus Roggenbach,
Monika Seisenberger, Anton Setzer
Swansea Railway Verification Group

Swansea University, Wales, UK

Karim Kanso
Critical Software Technologies
Southampton, England, UK

Simon Chadwick
Invensys Rail Northern Europe

a Siemens company
Chippenham, England, UK

Abstract—We report on the inclusion of a formal method into
a design process in industry. Concretely, we suggest carrying out
a verification step in railway interlocking design between pro-
gramming the interlocking and testing this program. Safety still
relies on testing, but the burden of guaranteeing completeness and
correctness of the verfication is in this way greatly reduced. We
present a complete methodology for carrying out this verification
step in the case of ladder logic programs and give results for real
world railway interlockings. As this verification step reduces costs
for testing, Invensys Rail is working to include such a verification
step into their design process of solid state interlockings.

I. INTRODUCTION

Solid state interlockings represent one of many safety mea-
sures implemented in railways. In Vincenti’s terminology [1],
interlockings are normal designs: railway engineers have a
clear understanding of their workings and customary features,
and it is standard practice to design them and to bring them
into operation.

The formal method we propose is a verification step
between programming the interlocking and the testing of this
program. On the one hand we have interlocking programs, their
representation in propositional logic, and their semantics in
terms of a labelled transition system; whilst on the other hand
we have general safety properties expressed in first order logic,
their specialization to propositional logic, and their satisfaction
relative to the labelled transition system. Both representation
and specialization can be automatically derived. The method
we suggest is to apply standard model checking approaches
and tools to the resulting model checking problem.

We first define interlockings and describe their design
exemplified by the GRIP process and the realisation of GRIP’s
Detailed Design phase at Invensys Rail. We detail our for-
mal method, i.e., the verification step, and compile different
technologies upon which the verification can be based, giving
comparative results in terms of a case study. We conclude with
a brief discussion of related work and future research. This
paper summarizes results published in [2]–[10].

II. DESIGNING SOLID STATE INTERLOCKINGS

In railways systems, solid state interlockings provide a
safety layer between the controller and the track. In order to
move a train, the controller issues a request to set a route.
The interlocking uses rules and track information to determine
whether it is safe to permit this request: if so, the interlocking
will change the state of the track (move points, set signals,
etc.) and inform the controller that the request was granted;

otherwise the interlocking will not change the track state.
In this sense, an interlocking is like a Programmable Logic
Controller (PLC). The standard IEC 61131 [11] identifies
programming languages for such controllers, including the
visual language ladder logic discussed below.

Interlockings applications are developed according to pro-
cesses prescribed by Railway Authorities, such as Network
Rail’s Governance for Railway Investment Projects (GRIP)
process. The first four GRIP phases define the track plan and
routes of the railway to be constructed, while phase five – the
detailed design – is contracted to a signalling company such
as Invensys which chooses appropriate track equipment, adds
control tables to the track plan, and implements the solid state
interlocking. It is for part of this phase, namely for the correct
implementation of a control table in a solid state interlocking,
that our paper offers support in terms of a formal method.

Signalling handbooks (e.g. [12]) describe how to design
control tables for the routes of a track plan selected for
signalling. Technical data sheets provide information of how to
control the selected hardware such as points, signals and track
circuits. It is a complex programming task to implement the
control tables for the selected hardware elements. For a larger
railway station, the resulting program can involve thousands
of tightly coupled variables, so thorough testing for safety is a
must. To this end, programs are run on a rig which simulates
the physical railway, and it can take any number of iterations of
testing and debugging for a program to pass all prescribed tests.
This testing cycle is cost intensive, as it is hardly automated
due to its interactive nature and concerns about the safety
integrity of any automated testing environment: the tester has
to run the program through various scenarios developing over
time. Furthermore, debugging is time consuming as there is
little support for producing counter examples.

It is at this point that the formal method described below
is able to reduce costs in the design process. Rather than
testing an interlocking program, we automatically transform
the program and the safety property that the test shall establish
into a model checking problem. Tool support then allows to
automatically check if the property is fulfilled. In case it is
not, a counter example is produced, possibly in the form of a
trace of controller requests and train movements. This allows
the programmer to obtain intelligible feedback. This process is
fast and far less involved than testing the program. For these
reasons, based on our research, Invensys Rail is working to
include such a verification step into their design process of
solid state interlockings.

III. FROM LADDER LOGIC TO MODEL CHECKING

A. Ladder Logic

Ladder logic gets its name from its graphical “ladder”-like
form (see Fig. 1) reminiscent of relay circuits. Each rung of the
ladder computes the current value of an output from the values
of one or more inputs in the rung one time step (i.e. one cycle)
earlier. A ladder logic program is executed top-to-bottom, and
an interlocking executes such a program indefinitely.

A ladder logic rung consists of the following entities. Coils
represent boolean values that are stored for later use as output
variables from the program. A coil is always the right most
entity of the rung and its value is computed by executing
the rung from left to right. Contacts are the boolean inputs
of a rung, with open and closed contacts representing the
values of un-negated and negated variables respectively. The
value of a coil is calculated when a rung fires, making use
of the current set of inputs – input variables, previous output
variables, and output variables already computed for this cycle
– following the given connections. A horizontal connection
between contacts represents logical conjunction and a vertical
connection represents logical disjunction. For example:

C

(a) A coil

X

Y

(b) Disjunction
with closed contacts

X Y

(c) Conjunction with an
open and a closed contact

As a running example we model a Pelican crossing,
consisting of: two buttons at each side of a road, allowing
pedestrians to make a request to cross; and four sets of lights
(2 pedestrian lights, pla and plb, and 2 traffic lights, tla and
tlb) controlling the flow of pedestrians and traffic. This is
modelled by a boolean input variable pressed and 8 variables
plar, plag, plbr, plbg, tlar, tlag, tlbr, tlbg, modelling the as-
pect of the light, ’r’ for ’red’, ’g’ for ’green’.

We also have two internal variables: req represents whether
one of the pedestrian buttons has been pressed in a previous
iteration of the program and whether there is already a request
to cross; and crossing models the fact that a pedestrian is
allowed to cross the road. Fig. 1 presents a ladder logic
program for such a Pelican crossing.

B. From Ladder Logic to Propositional Logic

From an abstract perspective, ladder logic diagrams repre-
sent propositional formulae. However, the process of obtaining
these formulae as described in [2] requires special care to pre-
vent a blow-up in formula size regarding nested disjunctions,
which would result in bad performance for CNF translation1.
This is achieved by traversing the formula from left to right,
building up sub-formulae, each of which consisting of a
conjunction or disjunction. The efficient use of sub-formulae
requires the introduction of auxiliary variables. Fig. 2 shows
an example and locations where variables are introduced.

A new variable is introduced for each step in the computa-
tion: After every contact x a new variable xi is introduced
(where i is fresh for x), and for each vertical connection
(disjunction) a new variable ∨j is introduced (where j is fresh).

1Required when interfacing with theorem provers.

req crossing crossing

pressed req req

pressed crossing tlag

req

pressed crossing tlbg

req

crossing tlar

crossing tlbr

crossing plag

crossing plbg

crossing plar

crossing plbr

Fig. 1. The ladder logic program for the pelican crossing

a b f

f e

c ∨1

∨2

a1

f1

c1

b1

e1

Fig. 2. Try tracing back from coil f : It is clear that the nested disjunction
results in the large formula f ′ ↔ (¬b∧ (a∨¬f ′ ∨ c))∨ (e∧ (a∨¬f ′ ∨ c)).

The rung is then broken at each of the intermediate variables,
resulting in a simplified ladder. Each rung in the simplified
ladder consists of only conjunction or disjunction and at most
one negation. By following the above procedure, applied to
the ladder in Fig. 2, the below assignments are obtained.

Translating the assignments from (a) below is canonical
with respect to the operators, giving the formula in (b):

a1 := a
f1 := ¬f
c1 := c
∨1 := a1 ∨ f1 ∨ c1
b1 := ∨1 ∧ ¬b
e1 := ∨1 ∧ e
∨2 := b1 ∨ e1
f := ∨2

(a) Assignments of Fig. 2.

(a′1 ↔ a)
∧ (f ′1 ↔ ¬f)
∧ (c′1 ↔ c)
∧ (∨′1 ↔ a′1 ∨ f ′1 ∨ c′1)
∧ (b′1 ↔ ∨′1 ∧ ¬b)
∧ (e′1 ↔ ∨′1 ∧ e)
∧ (∨′2 ↔ b′1 ∨ e′1)
∧ (f ′ ↔ ∨′2)

(b) Translation of (a).

The ladder logic of the Pelican logic in Fig. 1 translates (for
readability without the optimization) into the conjunction of
these formulae:

crossing′ ↔ req ∧ ¬ crossing,
req′ ↔ pressed ∧ ¬ req,
tlag′ ↔ (¬ pressed′ ∨ req′) ∧ ¬ crossing′
tlbg′ ↔ (¬ pressed′ ∨ req′) ∧ ¬ crossing′
tlar′ ↔ crossing′, tlbr′ ↔ crossing′,
plag′ ↔ crossing′, plbg′ ↔ crossing′,
plar′ ↔ ¬ crossing′, plbr′ ↔ ¬ crossing′

C. Ladder Logic Formulae and their Semantics

A ladder logic program is constructed in terms of disjoint
finite sets I and C of input and output variables. In our
example in Fig. 1, we have I = {pressed} and C =
{crossing, req, tlag, tlbg, tlar, tlbr, plag, plbg, plar, plbr}.
We define C ′ = {c′ | c ∈ C} to be a set of new variables
(intended to denote the output variables computed in
the current cycle). In addition, we need a function
unprime : C ′ → C,unprime(c′) = c.

Definition 1 (Ladder Logic Formulae). A ladder logic formula
ψ is a propositional formula of the form

ψ ≡ ((c′1 ↔ ψ1) ∧ (c′2 ↔ ψ2) ∧ . . . ∧ (c′n ↔ ψn)

such that the following holds for all i, j ∈ {1, . . . , n}:

• c′i ∈ C ′

• i 6= j → c′i 6= c′j

• Vars(ψi) ⊆ I ∪ {c′1, . . . , c′i−1} ∪ {ci, . . . , cn}
Remark 1. Note that the output variable c′i of each rung ψi,
may depend on {ci, . . . , cn} from the previous cycle, but not
on cj with j < i, due to the imperative nature of the ladder
logic implementation. Those values are overridden.

Remark 2. In the formulae extracted from a ladder logic
program equivalences (c′1 ↔ ψ1) ∧ · · · can be replaced by
(c′1 = ψ1) ∧ · · · . Both formulae are equivalent since for
Boolean values b and c the truth values of b ↔ c and
b = c are the same. The use of ↔ is suitable for the
input language of SAT solvers, which require logical formulae
(in our example combined with verification conditions) to be
checked for satisfiability. The use = is suitable for the input
language of model checkers, which require equations defining
the variables of the next state in terms of the current one.

Definition 2 (Semantics of Ladder Logic Formulae). Let {0, 1}
represent the set of boolean values and let

ValI = {µI |µI : I → {0, 1}} = {0, 1}I

ValC = {µC |µC : C → {0, 1}} = {0, 1}C

be the sets of valuations for input and output variables. The
semantics of a ladder logic formula ψ is a function that takes
the two current valuations and returns a new valuation for
output variables.

[ψ] : ValI ×ValC → ValC

[ψ](µI , µC) = µ′C

where

µ′C(ci) = [ψi](µI , (µC)�{ci,...,cn}, (µ
′
C ◦ unprime)�{c′1,...,c′i−1})

µ′C(c) = µC(c) if c /∈ {c1, . . . , cn}

and [ψi](·, ·, ·) denotes the usual value of a propositional
formula under a valuation.

D. Labelled Transition Systems

Next we make use of the above to form a labelled transition
system representing the ladder logic program.

Definition 3 (Labelled Transition System). A Labelled Tran-
sition System (LTS) M is a four tuple (S, T,R, S0) where

• S is a finite set of states.
• T is a finite set of transition labels.
• R ⊆ S × T × S is a labelled transition relation.
• S0 ⊆ S is the set of initial states.

We write s t−→ s′ for (s, t, s′) ∈ R. A state s is called reachable
if s0

t0−→ s1
t1−→ . . .

tn−1−−−→ sn, for some states s0, . . . , sn ∈ S,
and labels t0, . . . , tn−1 ∈ T such that s0 ∈ S0 and sn = s.

Definition 4 (Ladder Logic Labelled Transition System). We
define the labelled transition system LTS(ψ) for a ladder logic
formula ψ to be the four tuple (ValC ,ValI ,→,Val0) where

• µC
µI−→ µ′C iff [ψ](µI , µC) = µ′C

• Val0 = {µC |µC inital valuation}
Remark 3. The standard initial valuation in the railway
domain sets all red lights to 1, and all other variables to 0,
i.e. this results in exactly one initial state. A variant proceeds
as follows: First, all output variables are set to 0 and then
all possible transistions are performed. Val0 is then defined
as the set of states obtained after this first transition. In the
Pelican crossing example (see Fig. 3 below) this would lead
to two initial states rather than one. In both cases, a formula
Init characterizes Val0.

E. Producing Verification Conditions

In order to guarantee safety, companies such as Invensys
ensure through testing that interlockings fulfil certain prop-
erties. We formulate them as logical formulae, and call the
result safety conditions. These conditions are the main example
of verification conditions, which are formulae, for which we
check using our tools whether they hold in an interlocking
system. In our setting verification conditions are first-order
formulae, with variables ranging over entities such as points,
signals, routes, track segments, while referring to predicates.
An example of a signalling principle is the formula

∀rt , rt ′ ∈ Route.∀ts ∈ Segment.rt 6= rt ′

→ (part of(ts, rt) ∧ part of(ts, rt ′))
→ ¬(routeset(rt) ∧ routeset(rt ′))

expressing the property: for all pairs of routes that share a
track segment, at most one of them can be set to proceed.

Note there are two kinds of predicates: State and Topol-
ogy. State predicates express the state of entities at a given
time. E.g. routeset(rt26) expresses that route rt26 has been
set. These predicates will unfold into variables in the lad-
der logic program, so in the previous example the predi-
cate would—depending on the actual naming scheme—unfold
to the variable rt26ru . Topology predicates express meta
information relating to the topology of the railway yard.
E.g. part of(ts54 , rt26) expresses that the track segment ts54
is part of route rt26 . These predicates unfold to true or false,
depending on whether the property holds; thus, the previous
example unfolds to true when ts54 is actually part of rt26 ,
otherwise false.

Some topology predicates are atomic and stated explicitly
as true or false for given arguments. Other predicates can be
computed in terms of these atomic predicates. E.g., signal ms1
is a main signal guarding access to route rt , if there exists track

segments ts1 and ts2 such that ts1 is before route rt , ts1 is
connected with ts2 , ts2 is part of the route rt , and ms1 is
located directly between ts1 and ts2 . This can be expressed
as follows:

route main signal(ms1 , rt)↔ ∃ts1 , ts2 ∈ Segment.
before(ts1 , rt) ∧ connected(ts1 , ts2) ∧ part of(ts2 , rt)
∧ infrontof(ts1 ,ms1) ∧ inrearof(ts2 ,ms1)

In [2], [6] Kanso introduced a translation of such formulae
to propositional formulae which then can be verified using SAT
solving or model checking. He took the following steps:

(1) Expressed the topology as a Prolog program, which de-
termined the truth value of the topology predicates. It consisted
of clauses such as mainsignal(ms1) (ms1 is a main signal),
infrontof(ts0a,ms1) (signal ms1 is in front of track segment
ts0a). The above predicate route main signal(ms1 , rt) is
defined in Prolog as:

route main signal(ms1 , rt) :−
before(ts, rt), connected(ts, tss),
part of(tss, rt), infrontof(ts,ms1),
inrearof(tss,ms1).

(2) Translated using standard techniques from logic the
formula into prenex form, i.e. a formula starting with a block
of quantifiers followed by a quantifier free formula.

(3) Now ∀x ∈ A.ϕ(x) is replaced by ϕ(a1) ∧ · · · ∧ ϕ(an)
and ∃x ∈ A.ϕ(x) by ϕ(a1)∨· · ·∨ϕ(an), where a1, . . . , an are
the elements of set A in the topology. ϕ is now instantiated to
closed instances. Therefore the topological predicates evaluate
to truth valuese true or false, which can then easily be omitted
from the formula. Safety formulae can usually be translated
into universally quantified formulae in prenex normal form2.
The universally quantified formula is replaced by conjunctions,
where most conjuncts reduce to false, since topology predicates
such as connected(ts1 , ts2) are false for most choices of
arguments. Finally state predicates are replaced by the Boolean
variables of the ladder logic. In case of safety conditions
we obtain a conjunction of instantiations of ψ. Since safety
conditions usually become conjunctions, the validity of the
conjuncts can be checked separately for validity. This allows
to identify problems relating specific objects of the railway
yard.

A typical verification condition for our Pelican crossing
example would for instance ensure that the traffic lights and
the pedestrian lights are not green at the same time:

ϕ ≡ (tlag∧tlbg∧¬plag∧¬plbg)∨(¬tlag∧¬tlbg∧plag∧plbg)

F. The Model Checking Problem

Definition 5 (Safety Conditions for a Ladder Logic Program).
Given a ladder logic formula ψ over the variables in I ∪C a
verification condition is a propositional formula formed from
the variables in I ∪ C ∪ C ′.
Definition 6 (The Verification Problem for Ladder Logic
Programs). We define the verification problem for a ladder
logic formula ψ for a verification condition φ

LTS(ψ) |= φ

2∀x1 ∈ A1, . . . , xn ∈ An.ϕ(x1, . . . , xn), where ϕ is quantifier free.

iff for all triples µC , µI , µ′C such that µC
µI−→ µ′C and µC is

reachable in LTS(ψ), we have [φ](µC , µI , µ
′
C) = 1.

Note that in most cases, as in our Pelican crossing example,
the verification condition φ only consists of variables in C,
therefore the model checking problem simplifies to considering
individual states, i.e. whether [φ](µC) = 1 at all times. Fig. 33

shows the labelled transition system for the Pelican crossing
example. We have included one unreachable state in which
both required and crossing are true.

Crossing = 0
Req = 0

.

.

.

Crossing = 1
Req = 0

.

.

.

Crossing = 0
Req = 1

.

.

.

Crossing = 1
Req = 1

.

.

.

0

0, 1

1

0

0, 1

1

Fig. 3. Pelican crossing transition system

G. Model Checking Approaches

Target technology for the first three algorithms is SAT-
solving; in the algorithms, execution terminates after a “return”
statement has been performed.

1) Bounded Model Checking (BMC): BMC, see, e.g., [13],
restricts the depth of the search space. Let the formulae ψInitn ,
n ≥ 1, be unrolled transition relations which encode n steps
with ψ from an initial state of the automaton. The following
algorithm explores the automaton to a depth of up to K steps
(we assume that φ uses the variables concerning the last state):

if ¬(Init→ φ) satisfiable, return error state
n← 1
while n ≤ K do

if ¬(ψInitn → φ) satisfiable, return error trace
n← n+ 1

return “K-Safe”

As BMC produces a counter example trace if the verifica-
tion fails, it is especially interesting for debugging purposes.

2) Inductive Verification (IV): IV checks if an over approx-
imation of the reachable state space is safe. In the following
algorithm we assume that φ uses the variables concerning the
current state and φ′ those concerning the last state:

if ¬(Init→ φ′) satisfiable, return error state
if ¬(ψ ∧ φ→ φ′) satisfiable, return pair of error states
return “Safe”

The over approximation happens in the second line of the
algorithm: here one considers all safe states rather than the
reachable ones. This idea makes IV a very efficient approach
involving at most two calls to a SAT solver [2], [6].

3The transition labelled 0,1 is in fact two transitions, one labelled with 1
and the other labelled with 0.

3) Temporal Induction (TI): TI, see, e.g, [14], combines
BMC and IV to allow for both: complete verification and
counter example production. Let ψn be the unrolled transition
relation encoding n steps with ψ, let LFn be a formula
encoding that all n states of a sequence of states are pairwise
different and safen be a formula encoding that all these states
fulfil the verification condition, n ≥ 0. Define Basen ≡
Init ∧ ψn → φ and Stepn ≡ ψn+1 ∧ LFn+1 ∧ safen → φ,
n ≥ 0, where φ uses the variables concerning the last state.

n← 0
while true do

if ¬Basen satisfiable, return error trace
if ¬Stepn unsatisfiable, return “Safe”
n← n+ 1

4) Stålmarck’s Algorithm: This algorithm has been devel-
oped and patented by Stålmarck [15]. It usually works well on
industrial problems as they are often of considerable size, but
with a simple underlying structure. This is due to its ability to
merge the conclusion of branches in a proof tree which can be
seen as a form of learning. Its underlying theory was influenced
by sequent calculus and semantic tableaux which inspired the
branch and merge dilemma rule and the simple proof rules
respectively. The algorithm makes use of equivalence classes
in the form of data structures known as triplets.

5) Optimization via Slicing: Usually, the verification condi-
tion φ does not use all variables of the ladder logic formula ψ.
This opens up the possibility to slice ψ with respect to φ, i.e.,
to compute a formula ψφ with ψ |= φ ⇔ ψφ |= φ where ψφ
involves fewer variables and rungs than ψ. [16], [17] present
an algorithm to compute ψφ, [4], [9] give a correctness proof.
Here is the sliced ladder logic program of the Pelican crossing
example for the condition (tlag ∨ tlar) ∧ ¬(tlag ∧ tlar) ∧
(tlbg ∨ tlbr) ∧ ¬(tlbg ∧ tlbr):

crossing′ ↔ req ∧ ¬crossing,
req′ ↔ pressed ∧ ¬req,
tlag′ ↔ (¬ pressed′ ∨ req′) ∧ ¬ crossing′

tlbg′ ↔ (¬ pressed′ ∨ req′) ∧ ¬ crossing′

tlar′ ↔ crossing′,

tlbr′ ↔ crossing′

Such slicing can be applied as a pre-processing step for all
four approaches discussed above.

H. Excluding False Positives by Invariants

When verifying concrete examples, often false positives
were obtained. When discussing these counter examples with
railway experts, one obtains usually that these examples do not
occur because a certain combination of values for variables is
not possible. This means that a certain invariant was violated.
We identified [2] two kinds of invariants, physical invariants
and mathematical invariants. Physical invariants are due to the
fact that certain combinations of input variables are physically
impossible. An example is a three way switch, which is mod-
elled by 3 variables where each variable i indicates whether
the switch is in position i or not.4 It is physically impossible

4One could easily model it by 2 variables; however having 3 variables
makes it easier to compute the next state from the current state.

for this switch to be in two positions simultaneously. Physical
invariants need to be carefully investigated by domain experts.
One example could be a paper clip falling into a three way
switch, which connects then two contacts, and one might want
the railway yard to be safe even if a paper clip has falled into
the switch.

Mathematical invariants. When using IV one might obtain
states which violate the safety condition, but are not reachable
from the initial state. In this case one can identify invariants,
which hold in all reachable states but not in the false positive.
In many cases one can prove now using the tool that the
invariant holds in all cases, and then prove again using the
tool that the verification condition holds provided the invariant
holds.

I. Graphical Representation

In order to investigate counter examples a graphical rep-
resentation of the error states was given. For our prototype
Kanso [2], [6] developed a latex document, which contained
a scheme plan with signals sets of points and routes, together
with tables listing the state of all variables in question. The
state of signals (red or green) and points and of all tables listed
was determined by macros. It was now easy to compute from
an error state a document setting these macros to the values
in this state, and therefore present an easy to view document.

IV. TECHNOLOGY & CASE STUDIES

A. Sat-Solving with open software

An initial—successful—feasibility study was conducted
using the open-source OKLibrary as underlying SAT solving
framework to automate IV in order to establish safety prop-
erties. To this end, we used the Dimacs format as a target
language. Note that this requieres a representation in CNF.

Extending this implementation, we produced a framework
of automatic translations of the formulae ψ, written in Haskell
(about 8000 lines of code), and φ, written in Java (about 1000
lines of code), into the formulae required for the algorithms
BMC, IV, and TI. As target format we chose TPTP [18], which
is the input language of the Paradox tool [19]. Internally, the
open source tool Paradox is based on the SAT solver Minisat
[20], which is open source as well. Using Paradox has the
advantage that the tool takes care of the translation into Dimacs
format. The framework also includes a Haskell implementation
of slicing (about 500 lines of code).

Using this framework, experiments on our Pelican crossing
example with the above verification condition showed: with
BMC the program is K safe for all K ≥ 0 we tried; with
IV, we obtain a pair of error states; TI gives the result “Safe”.
This example demonstrates that though IV is sound, it is not
complete.

B. The SCADE Suite as an Industrial Tool

For comparison, we applied a tool widely used in Industry,
where however no control over the method applied is available.
In SCADE (Safety Critical Applications Development Environ-
ment) [21] programs are verified using the SCADE language
and Prover Technology based on Stalmarck’s algorithm. The

program to translate ladder logic programs into SCADE lan-
guage is based on the framework described above, it has a
length of approximately 8000 lines of Haskell code [5].

The SCADE language is based on the synchronous dataflow
language Lustre [22]. The flows which constitute a Lustre
program are infinite sequences of values which describe how
a variable changes over time. Flows are combined together to
form nodes which can be seen as the Lustre equivalent of a
function or procedure. There are two main temporal operations
which can be applied to flows:

• The operator pre allows one to speak about the
previous value of a flow.

• The operator -> allows one to speak about the initial
value of a flow and its successive values.

The following is the result of the automatic translation of the
pelican crossing ladder logic to SCADE.

node PelicanLadderLogic1(pressed: bool)

returns (req, crossing, tlag, tlar, tlbg, tlbr, plag,
plar, plbg, plbr: bool)

let crossing = false -> pre req and (not (pre crossing));
req = false -> (not pre req) and pressed;
tlag = false -> ((not pressed) or req) and (not crossing);
tlbg = false -> ((not pressed) or req) and (not crossing);
tlar = true -> crossing;
tlbr = true -> crossing;
plag = false -> crossing;
plbg = false -> crossing;
plar = true -> not crossing;
plbr = true -> not crossing;

tel

C. Industrial Case Study

Using the approaches described above we automatically
translated real world railway interlockings and safety proper-
ties into the Dimacs format (for IV), the TPTP language (for
BMC, IV, and TI) and the SCADE language. The verification
results gained have been positive. For every safety condition
the tools have either given a successful verification, or a
counter example (trace). All results have been obtained within
the region of seconds.

In the following we report on the verification of a small,
real world interlocking which actually is in use on the London
Underground. The ladder logic program consists of approxi-
mately six hundred variables and three hundred and fifty rungs.
Concerning typical verification conditions, slicing reduces the
number of rungs down to 60 rungs, i.e., the program size is
reduced by a factor of 5. All experiments reported have been
carried out on a computer with the operating system Ubuntu
9.04, 64-bit edition, an Intel Q9650, Quad core CPU with
3GHz, and a System Memory of 8GB DDR2 RAM.

1) Evaluation with an Open Source Tool: The first con-
dition encodes that if a point has been moved, it must have
been free before. Here, the verification actually fails. IV yields
a pair of states within 0.75s, while BMC produces an error
trace of length 3 in 0.81s, TI produces the same trace. The rail
engineers were able to exclude this counter example as a false
positive. By adding justifiable invariants we could exclude this
false positive. The second condition excludes that the program
gives an inconsistent command, namely, that a point shall be

set to normal and to reverse at the same time. IV proves this
property in 0.71s; BMC yields K-safety for up to 1000 steps,
after which we ran out of memory; BMC on the sliced program
is possible up to 2000 steps; TI does not terminate, neither
for the original nor for the sliced version. Our experience is
that IV can deal with real world examples. Slicing yields an
impressive reduction of the size of the ladder logic program. It
is beneficial when producing counter examples with BMC as
it reduces the runtime and also helps with error localization.

2) Verifying the Industrial Case Study using SCADE:
All above safety conditions take times less than 1s [5]. We
attempted the verification of 109 safety conditions out of these
54 were valid and 55 produced counter examples. The latter
are false positives and were eliminated by adding invariants
as described above. The total time for the verification and
production of counter examples for all of these safety condi-
tions was under 10 seconds. This may be in part due to some
support for multi-core processors allowing the SCADE suite
to dispatch multiple verification tasks efficiently. Generally,
in the process of removing false positives approximately one
hundred invariants were added. Overall, this shows that SCADE
is a viable option for the verification of railway interlockings.

V. CONCLUSION

The overall conclusion is that the verification step described
works out: the required translations can be automated, the cur-
rent tools scale up to real world problems, the gained benefits
are convincing enough for the company Invensys to change its
practice. In terms of the underlying proof technology, it is a
matter of taste / philosophy / further constraints if one wants
to employ open software tools or a commercial product.

Our work on verifying ladder logic programs has been
inspired by [16], [17]. Alternative approaches include [23]
who apply timed automata and UPPAAL or [24] who present a
development framework for ladder logic, including verification
by port-level simulation. Our contribution is to put known
verification approaches into the context of a concrete engineer-
ing problem and, by providing a prototypical implementation,
demonstrating that they work.

Putting the context even wider, in his PhD thesis [3] Kanso
shows how to fully verify railway interlockings by interactive
theorem proving. This work greatly reduces the gap between
formal verification of safety and safety in the real world.

REFERENCES

[1] W. G. Vincenti, What engineers know and how they know it. The
Johns Hopkins University Press, 1990.

[2] K. Kanso, “Formal verification of ladder logic,” 2010, MRes Thesis,
Swansea University.

[3] ——, “Agda as a platform for the development of verified railway
interlocking systems,” 2012, PhD Thesis, Swansea University.

[4] P. James, “SAT-based model checking and its applications to train
control software,” 2010, MRes Thesis, Swansea University.

[5] A. Lawrence, “Verification of railway interlockings in SCADE,” 2011,
MRes Thesis, Swansea University.

[6] K. Kanso, F. Moller, and A. Setzer, “Automated verification of sig-
nalling principles in railway interlocking systems,” ENTCS, vol. 250,
pp. 19–31, 2009.

[7] K. Kanso and A. Setzer, “Specifying railway interlocking systems,” in
PreProceedings of AVoCS’09, 2009, pp. 233 – 236.

[8] ——, “Integrating automated and interactive theorem proving in type
theory,” in Proceedings of AVOCS 2010, 2010.

[9] P. James and M. Roggenbach, “Automatically Verifying Railway In-
terlockings using SAT-based Model Checking,” in Proceedings of
AVoCS’10. Electronic Communications 35 of EASST, 2010.

[10] A. Lawrence and M. Seisenberger, “Verification of railway interlockings
in SCADE,” in Proceedings of AVOCS 2010, 2010.

[11] IEC, “IEC 61131-3 edition 2.0 2003-01. international standard. pro-
grammable controllers. part 3: Programming languages,” January 2003.

[12] M. Leach, Ed., Railway Control Systems: a sequel to Railway Sig-
nalling. A & C Black, 1991.

[13] E. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded model checking
using satisfiability solving,” in Formal Methods in System Design.
Kluwer Academic Publishers, 2001, p. 2001.

[14] N. Een and N. Sörensson, “Temporal induction by incremental SAT
solving,” ENTCS, vol. 89, no. 4, 2003.

[15] G. Stålmarck, “System for determining propositional logic theorems by
applying values and rules to triplets that are generated from boolean
formula,” 1994, US Patent: 5,276,897.

[16] J. Groote, J. Koorn, and S. Van Vlijmen, “The safety guaranteeing
system at station Hoorn-Kersenboogerd,” in Compass’95. IEEE, 1995.

[17] W. Fokkink and P. Hollingshead, “Verification of interlockings: from
control tables to ladder logic diagrams,” in FMICS’98, 1998.

[18] “The TPTP problem library for automated theorem proving,”
http://www.cs.miami.edu/ tptp/.

[19] K. Claessen, “New techniques that improve mace-style finite model
finding,” in CADE-19, 2003.

[20] “Minisat,” http://minisat.se.
[21] P. Abdulla, J. Deneux, G. Stålmarck, H. Argen, and O. Akerlund,

“Designing safe, reliable systems using SCADE,” in Springer LNCS
4313, 2006, pp. 115–129.

[22] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice, “LUSTRE: a
declarative language for real-time programming,” in POPL’87, 1987.

[23] B. Zoubek, J.-M. Roussel, and M. Kwiatowska, “Towards automatic
verification of ladder logic programs,” in CESA’03. Springer, 2003.

[24] K. Han and J. Park, “Object-oriented ladder logic development frame-
work based on the unified modeling language,” in Computer and
Information Science. Springer, 2009.

