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We show, that all Π0
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Set theoretical proofs as type theoretical programs

Anton Setzer

1 Introduction

Mathematics is usually developed on the basis of set theory. When trying to use type
theory as a new basis for mathematics, most of mathematics has to be reformulated. This
is of great use, because then the step to programs is direct and one can expect to get the
best programs. However, it seems that most mathematicians will continue to work in set
theory. Even when changing to type theory for the formalisation, usually the proofs will
be developed first having classical set theory in the background. Therefore methods for
transferring directly set theoretical arguments to type theory could make the step from
traditional mathematics to type theory and therefore to computer science far easier.

The reason why set theory is used in mathematics is its high flexibility and that it allows
to write down expressions without having to care about the type of the object. Therefore,
if set theoretical proofs can be transferred to type theory, one could use set theory as a
programming language added to type theory.

In our definition of KPI+
U only natural numbers are included as urelemente, which form

the basic data structure, for which programs can be extracted. However, the method used
is not at all restricted to this particular structure. Lists and free algebras can be included
easily and we are working on an extension to data structures of higher type.

Π0
2-sentences can be considered as specifications of programs, and proofs in Martin-Löf’s

Type Theory are programs. In this abstract we will prove, that all Π0
2-sentences provable

in a certain set theory KPI+
U =

⋃
n∈N

KPI+
U n

can be proved in ML1W , Martin-Löf’s
Type Theory with W -type and one universe. KPI+

U is Kripke Platek set theory with
urelemente (the natural numbers), one admissible (admissible are the recursive analogue
of cardinals) closed under the step to the next admissible (a recursive inaccessible) and
finitely many admissibles above it. This works for all variations (intensional, extensional,
different versions of the identity type). Since, in [Se93] we have shown, that all arith-
metical sentences provable in ML1W are theorems of KPI+

U , it follows, that these two
theories have the same Π2-theorems. Therefore, transferring programs to ML1W from
proof theoretically stronger set theories is no longer possible.

The method used here is certainly feasible, the only exception is the well ordering proof,
which will be used here, and seems to be too long for practical applications. However,
one can think about conservative extensions of ML1W by adding types, the elements of
which represent ordinal denotations, and rules for transfinite induction. Then everything
shown here can be easily implemented in Martin-Löf’s Type Theory.

We use here techniques from proof theory. These are based on ordinal analysis. However,
very basic knowledge about ordinals is sufficient for understanding this proof, since we are
just formalising a proof, which need not be understood itself.

Our method is heavily built on transfinite induction. In [Se95] the author has shown, that
ML1W shows transfinite induction up to the ordinals ψΩ1

(ΩI+n), therefore as well up to
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αn := ψΩ1
(εΩI+n+1) + 1. Transfinite induction up to αn is exactly what we need in order

to analyse KPI+
U n

. Now it is just necessary to formalise this analysis in ML1W using,
that we have transfinite induction up to αn, and to extract the validity of Π0

2-sentences
from the cut free proofs.

This formalisation is not trivial, since in modern methods (like Buchholz’ H-controlled
derivations), proof theoretical analysis is carried out in full set theory. However, using
proof trees with a correctness predicate, we are able to overcome this difficulty.

The methods used here can on one hand extended to all recent proof theoretical studies
using infinitary derivations and ordinal analysis. Only, the type theory is not available yet,
except for Mahlo universes. (For Mahlo, the author presented a type theory on the Logic
Colloquium ’95 in Haifa, there is related work by Rathjen and Griffor). Further, one sees
easily, that the well-foundedness of the W -type is not needed really here, since we have
always a descent in ordinals. (For the RS∗-derivations, ||Γ|| is descending). Therefore,
by replacing the W -type by a recursive object obtained using the recursion theorem, (so
I becomes now a not necessarily least fixed point – one naturally has to replace in the
proof of lemma 7 f by a list coded as a natural number) which can be defined in PRA,
one shows with nearly the same proof, that PRA + TI(OT n) shows all Π2-sentences of
KPI+

U .

Independently, W. Buchholz has taken a different approach for obtaining the same result,
by using denotation systems (extending [Bu91]). This has the advantage of giving directly
executable programs, whereas our method has the advantage of being very perspicuous
and explicit.

The other approach for extracting programs from classical proofs are based on the A-
translation. This can even be carried out for full set theory, as shown by Friedman (a
good presentation can be found in [Be85] section VIII.3). A lot of research is carried
out for extracting practical programs using the A-translation, see for instance [BS95] or
[Sch92]. However, since Martin-Löf’s Type Theory is already a programming language,
we believe, that our approach allows to switch more easier between classical proofs and
direct programming. Further, in KPI+

U one has constructions corresponding precisely to
the different type constructors in type theory, so with our method we have good control
over the strength of the methods used.

2 General Assumptions

Assumption 1 (a) We assume some coding of sequences of natural numbers.
< k0, . . . , kl > denotes the sequence k0, . . . , kl and (k)i the i-th element (beginning
with i = 0) of the sequence k.

(b) In the following we will omit the use of Gödel-brackets.

(c) Let n0 : N be fixed.

Definition 2 (a) Let OT be defined as in [Se95], definition 3.9. We define OT n0
by:

O, I ∈ OTn0
.

If α, β ∈ OTn0
, γ =′

NF α + β ∨ γ =NF φαβ ∨ γ =NF Ωγ ∨ γ =NF ψβγ, γ ∈

2



OT ∩ εΩI+n0
+1, then γ ∈ OTn0

.
In the following α, β, γ denote elements of OT n0

.

(b) We restrict the ordering ≺ on OT to OT n0
(replace ≺ by ≺ ∩OT n0

×OTn0
)

(c) Let ML1W be Martin-Löf ’s Type Theory with W -type and one universe, as for
instance formulated in [Se95], or any other formulation (for instance we can use the
the identity type together with the elimination operator).

(d) For arithmetical sentences φ, let φ̂ the canonical interpretation of φ in ML1W .

Theorem 3 If ML1W ` n : N ⇒ φ(n) type, then ML1W ` ∀k ∈ OTn0
.((∀l ≺ k.φ(k)) →

φ(l)) → ∀k ∈ OT n0
.φ(k).

Proof: Let W ′ := Wn0+1 as in [Se95], definition 5.37. Then OT n0
⊂ W ′. Let ψ(x) :=

x 6∈ OT n0
∨ φ(x). Then Prog(W0, (x)ψ(x)), ∀k ∈ W0.ψ(k), and the assertion.

3 The set theory KPI
+
U n

Definition 4 of the theory Kpi+u

(a) The language of KPI+
U n0

consists of infinitely many number variables, infinitely
many set variables, symbols for finitely many primitive recursive relations (on natural
numbers) P of arbitrary arity, the relations Ad, Ad, ∈ and 6∈ (the latter are written
infix) and the logical symbols ∧,∨,∀,∃.

In the following n,m denote number variables and a, b, c denote set variables, to
which we might add (this will apply to all future such conventions) indices, tilde-
symbol or accents.

an, bn, cn, am, bm, cm denote variables, which are either set variables or number
variables.

We assume that that P=, the 2-ary equalitybetween two natural numbers, ⊥, the 0-
ary false relation, and for every primitive recursive relation P , the negation of this
relation P are in the set of primitive recursive relations. > := ⊥.

(b) Number terms are Sk(0) and Sk(n), where k ∈ N, S0(r) := r, Sk+1(r) := S(Sk(r)).
sn and tn denote number terms. The set terms are the set variables.

We define val(Sk(0)) := k.

(c) Prime formulas are P (tn1, . . . , tnk), where P is an k-ary primitive recursive relation
symbol, Ad(a), Ad(a), s ∈ a, s 6∈ a.

(d) Formulas are prime formulas, and if φ and ψ are formulas then φ∧ ψ, φ∨ ψ, ∀a.φ,
∀n.φ, ∃a.φ, ∃n.φ are formulas. φ, ψ denote formulas in the following.

(e) We define the negation of a formula by the deMorgan rules: ¬P (tn1, . . . , tnk) :=
P (tn1, . . . , tnk), ¬(s ∈ a) := s 6∈ a, ¬Ad(a) := Ad(a), ¬(ψ ∧ φ) := ¬(ψ) ∨ ¬(φ),
¬(∀an.φ) := ∃an.¬φ, ¬(¬(φ)) := φ otherwise.
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(f) ∀an ∈ b.φ := ∀an.an ∈ b→ φ, ∃an ∈ b.φ := ¬(∀an ∈ b.¬φ).

(g) A formula is arithmetical, if it contains neither set terms nor set variables, ∆0, if it
contains only restricted set-quantifiers.
It is in Σ1, if it contains no unrestricted universal set quantifier, in Σarith

1 , if it is
arithmetical and contains no unrestricted universal number quantifier.
The arithmetical Π0

2-formulas are formulas ∀n.φ, φ ∈ Σarith
1 .

φ ∈ Σ(κ) :⇔ φ = ψLκ for some ψ ∈ Σ1. In this situation, φt,κ := ψt. Further
φβ,κ := φLβ ,κ.
If φ is a formula, let φa be the result of replacing in φ every unrestricted set-quantifier
(not number quantifier) ∀b by ∀b ∈ a, and φβ := φLβ .

(h) ∀x.φ := (∀n.φ[x := n]) ∧ (∀a ∈ b.φ[x := a]), where φ[x := n] is the result of
substituting for x n in φ, if the result is a formula, and φ[x := n] := ⊥ otherwise,
similar for φ[a := n].

(i) Γ, ∆ denote multi-sets of formulas. Γ,∆ := Γ ∪∆, Γ, φ := Γ ∪ {φ}.

(j) φ→ ψ := ¬φ ∨ ψ, φ ⇐⇒ ψ := (φ→ ψ) ∧ (ψ → φ).

For number or set terms s, t we define:
a ⊂ b := ∀x ∈ a.x ∈ b.

s = t :=





P=(s, t) if s, t are number terms
s ⊂ t ∧ t ⊂ s∧

(Ad(s) ⇐⇒ Ad(t)) if s, t are set terms
⊥ otherwise

trans(a) := ∀b ∈ a.∀x ∈ b.x ∈ a.

(k) The logical rules are Γ, φ,¬φ, Γ,φ Γψ
Γφ∧ψ , Γ,φ

Γφ∨ψ , Γ,ψ
Γφ∨ψ , Γ,φ

Γ,∀n.φ (if n 6∈ FV (Γ)), Γ,φ
Γ,∀a.φ(a)

(if a 6∈ FV (Γ)), Γ,φ[n:=tn]
Γ,∃n.φ , Γ,φ[n:=a]

Γ,∃a.φ , and Γ,φ Γ¬φ
Γ .

(l) Axioms of KPI+
U n0

The set axioms are:

(Ext1) ∀x.∀y.∀a.(x = y → x ∈ a→ y ∈ a).

(Ext2) ∀a.∀b.(a = b→ Ad(a) → Ad(b)).

(Found) ∀ ~an.[∀a.(∀b ∈ a.φ(b, ~an))φ(a, ~an)] → ∀a.φ(a, ~an).

(Pair) ∀x, y.∃a.x ∈ a ∧ y ∈ a.

(Union) ∀a.∃b.∀y ∈ a.∀x ∈ y.(x ∈ b).

(∆0 − Sep) ∀ ~an∀a.∃b.[[∀x ∈ b.(x ∈ a ∧ φ(x, ~an))] ∧ [∀x ∈ a.(φ(x, ~an) → x ∈ b)]]

(∆0 − Coll) ∀ ~an.∀a.[∀x ∈ a.∃y.φ(x, y, ~an)] → ∃b.[∀x ∈ a.∃y ∈ b.φ(x, y, ~an)]

(Ad.1) ∀a.Ad(a) → trans(a).

(Ad.2) ∀a, b.((Ad(a) ∧Ad(b)) → (a ∈ b ∨ a = b ∨ b ∈ a)).

(Ad.3) ∀a.(Ad(a) → φa), where φ is an axiom (Pair), (Union)

(∆0 − Sep), (∆0 − Coll).

(+)n0
∃a, a1, . . . , an0

.Ad(a) ∧ (∀x ∈ a.∃c ∈ a.(Ad(c) ∧ x ∈ c)) ∧

Ad(a1) ∧ · · · ∧Ad(an0
) ∧ a ∈ a1 ∧ a1 ∈ a2 ∧ · · · ∧ an0−1 ∈ an0
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The arithmetical axioms are:
Some formulas ∀~n.∃~m.φ(~n, ~m), where φ is quantifier free and for some primitive
recursive functions f1, . . . , fl ML1W proves ∀~k ∈ N.φ(~n, f1(~k), . . . , fl(~k)). Addition-
ally induction: φ(0) ∧ ∀n.(φ(n) → φ(S(n))) → ∀n.φ(n).

4 Formalisation of the infinitary system RS

Definition 5 We define the RS-terms and RS-formulas as follows:

(a) TN := {Sk(0) | k ∈ N}.
FORN is the set of formulas in KPI+

U n0
.

(b) Tα := {Lα}∪
{[a ∈ Lα : φ(a)] ∪ [n ∈ N : ψ(n)] |
φ, ψ ∈ FORα ∧ (a ∈ FV (φ) ∨ n ∈ FV (ψ)) ∧ FV (φ) ⊂ {a} ∧ FV (ψ) ⊂ {n}}

FORα is the result of replacing in KPI+
U n0

-formulas set terms by elements of T≺α,
and restricting all unrestricted quantifiers to Lα.
K(Lα) := {α}, K([a ∈ Lα : φ(a)] ∪ [n ∈ N : ψ(n)]) := {α} ∪K(φ) ∪K(ψ).
K(φ) :=

⋃
t setterm occurring in φK(t), |r| := maxK(r) for r formula or term.

FOR≺α := {ψ | ψ ∈ FOR|φ| ∧ |φ| ≺ α}, Tα := {t | t ∈ FOR|t| ∧ |t| ≺ α}.

(c) FOR :=
⋃
{FORα | α ∈ OT n0

}, FORcl := {φ ∈ FOR | FV (φ) = ∅},
FORcl,a := FORcl ∩ FORα, FORcl,≺α := FORcl ∩ FOR≺α.
Tset :=

⋃
{Tα | α ∈ OT n0

}, T := TN ∪ Tset, T
0,1 := T ∪ {0, 1}.

In the following ra, sa, ta, ra, sa, ta denote elements of Tset, and r, s, t elements of
T .

Note, that elements of Tα, FORα, TN, FORN are finite objects, therefore we can implement
this easily in Martin-Löf Type Theory.

Definition 6 (a) For s, t ∈ T such that |s| ≺ |t| we define s
◦
∈t:

s
◦
∈Lα := >, sa

◦
∈[a ∈ Lα : φ(a)] ∪ [n ∈ N : ψ(n)] := φ[a := sa], sn

◦
∈[a ∈ Lα :

φ(a)] ∪ [n ∈ N : ψ(n)] := ψ[n := sn].

(b) We assign to formulas φ in FORcl expressions φ '
∧
ι∈J φι or φ '

∨
ι∈J φι, where

J ⊂ T 0,1, as follows:
If P (val(sn1), . . . , val(snk)) is false, then P (sn1, . . . , snk) :'

∨
ι∈∅ φι.

(φ0 ∨ φ1) :=
∨
ι∈{0,1} φι,

sa ∈ ta :'
∨
sb∈T|ta|

(sb
◦
∈ta ∧ sa = sb)

sn ∈ sa :'
∨
tn∈TN

(tn
◦
∈sa ∧ sn = tn).

∃n.φ :='
∨
sn∈TN

φ[sn] ∃a ∈ t.φ :'
∨
sa∈T|t|

(sa
◦
∈t ∧ φ[a := sa]).

Ad(s) :'
∨
t∈J(t = s) with J := {Lκ|κ ∈ R ∧ κ � |s|}.

In all other cases, we have for some J , ψι, ¬φ '
∨
ι∈J ψι and φ :'

∧
ι∈I(¬ψι).

If φ '
∨
ι∈I φι, we call φ an ∨-formula, and if φ '

∧
ι∈I φι, φ an ∧-formula. In

both situations let Index(φ) := J , φ[ι] := φι. Note, that we can primitive recursively
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decide, whether φ is an ∨ or ∧-formula, and for the J as above whether ι ∈ J .
Further φ[ι] is primitive recursive in φ and ι.

We write
∧
ι∈J φι for any formula φ such that φ '

∧
ι∈J φι, similar for

∨
ι∈J φι.

(c) We define rk(θ) for θ ∈ FORcl ∪ T by
rk(Lα) := ω · (α+ 1),
rk([a ∈ Lα : φ] ∪ [n ∈ N : ψ]) := max{ω · α+ 1, rk(φ[a := L0]), rk(ψ[n := 0])},
rk(Ad(t)) := rk(t) + 5,
rk(sa ∈ t) := max{rk(sa) + 6, rk(t) + 1},
rk(∃a ∈ t.φ) := max{rk(t), rk(φ[a := L0]) + 2},
rk(∃n.φ) := rk(φ[n := 0]) + 2,
rk(φ0 ∨ φ1) := max{rk(φ0), rk(φ1)}+ 1,
rk(¬φ) := rk(φ) otherwise.

[Bu92], lemma 1.9 and definitions 1.10, 1.11, 1.12, 2.1. can be define accordingly. The αR

and ‖Γ‖ are primitive recursive functions.

Lemma 7 Assume ML1W ` B : N → P(N), (P(N) := N → U) ML1W ` Φ : N3 → U ,
ML1W ` Ψ : N → U .
Let Γ : P(N) → P(N), Γ(B) := {k : N | Ψ(k) ∧ ∀l ∈ B(k).∃l ′ ∈ I.Φ(k, l, l′)}.
Then we can define I such that ML1W ` I : P(N), and we can prove in ML1W :
Γ(I) ⊂ I, and for every sub-class A of N we have Γ(A) ⊂ A→ A ⊂ I.

Proof: Define WΓ := Wk : N.τ(k) with τ(k) := Σl : N.(l ∈ B(k)) (where here l ∈ B(k)
is the proposition corresponding to the property l ∈ B(k)). Let for sup(k, s) : WΓ,
LocCor(sup(k, s)) := Ψ(k) ∧ ∀l : N.∀p : l ∈ B(k).Φ(k, l, index(s < l, p >)).
Let index(sup(r, s)) := r, pred(sup(r, s)) := λx.sx.
Define w ≺1

W sup(k′, s) :⇔ ∃r : τ(k).sr = w.
Let w �W w′ :⇔ ∃l : N.∃f : N →WΓ.f0 = w′ ∧ fl = w ∧ ∀i < l.f(i+ 1) ≺1

W fi.
Let for w : WΓ, Cor(w) :⇔ ∀w′ �W w.LocCor(w′).
Let I := λk.∃w : WΓ.Cor(w) ∧ index(w) = k.
Then one easily sees, that I fulfils the conditions of the theorem.

Definition 8 (a) As in [Bu92] we define the infinitary system RS∗ as the collection of
all derivations generated by five inference rules:

(
∧

)∗
· · · `ρ Γ, φι · · · (ι ∈ J)

`ρ Γ,
∧
ι∈J φι

(
∨

)∗
`ρ Γ, φι0 , . . . , φιk
`ρ Γ,

∨
ι∈J φι

(if ι0, . . . , ιk ∈ J ∧K(ι0, . . . , ιk) ⊂ k(Γ,
∨
ι∈J φι))

(Ad)∗
· · · `ρ Γ, φ[a := Lκ] · · · (κ � |t|)

`ρ Γ, Ad(t) → φ[a := t]
, if rk(φ[a := L0]) ≺ ρ

(Ref)∗ Γ, φ→ ∃a ∈ Lκ.φ
a,κ, if φ ∈ Σ(κ) ∧ κ ∈ R ∧ ρ 6= 0

(Found)∗ Γ,∃a ∈ Lα((∀b ∈ a.φ[a := b])∧ 6 φ),∀a ∈ Lα.φ ifρ 6= 0.
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(b) We formalise 1 in Martin-Löf Type Theory as follows:
In order to get unique predecessors, we replace the information on the nodes by
sequences < rule, ρ,Γ >, where rule =<

∧
, φ > or rule =<

∨
, φ, iota0, . . . , ιl > or

rule =< Ad, φ, a, s > or rule =< Ref, φ, a, κ > or rule =< Found, φ, a, b, α >.
Then, we have

B(<<
∧
, φ >,Γ >) := Index(φ), Ψρ(<<

∧
, φ >,Γ >) := φ ∈ Γ ∧ φ ∧ −Formula,

Φ(<
∧
, φ,Γ >, ι, p) := (p)1 = Γ \ φ ∪ {φ[ι]}.

B(<<
∨
, φ, ι0, . . . , ιl >,Γ >) := Index(φ), Ψρ(<

∧
, φ, ι0, . . . , ιl >,Γ >, p) := φ ∈

Γ ∧ φ ∨ −Formula ∧ι0, . . . , ιl ∈ J , Φ(<
∧
, φ, ι0, . . . , ιl >,Γ >, p) := (p)1 = Γ \ φ ∪

{φ[ι0], . . . , φ[ιl]}.
The other rules are treated in a similar way.

Then with the set Iρ as in 7 defined for B, Ψρ, Φ, {(p)1|p ∈ I} is the set of sequences
derivable in RS, and we define `∗ρ Γ :⇔ ∃p ∈ Iρ.(p)1 = Γ.

(c) q `∗ρ (index(q))1.
q `∗ρ Γ is now the formalisation of, what is defined in [Bu92] definition 2.3. q `∗

Γ :⇔ q `∗0 Γ.

Lemmata and theorems 2.4 – 2.9 of [Bu92] follow now with nearly the same proofs. The
only modifications to be made are, to define [s 6= t], if either s or t is not a set-term, to
add instances for the case A = P (n1, . . . , nm) in lemma 2.7. Further we can easily prove
that for all arithmetical axioms φ, except the induction theorem we have `∗ φ (here we
need, that the mi are primitive recursive in the ~n, so we can easily define the proof). The
only case, where we really have to work is to give a cut-free proof of the induction axiom,
and the reader can easily find such a proof, so for every instance φ of the induction axiom
we have `∗ φ.

5 H-controlled derivations

Next step is to formalise H-controlled derivations. However, this is only necessary for
operators Hγ [θ], where Hγ is defined in [Bu92], definition 4.3. Further, not that Hγ(X)
is needed only for finite sets X. We formalise Hγ first:

Definition 9 (a) γ ∈ C(α, β) :⇔ γ ≺ β ∨ γ η {0, I} ∨ ∃δ, ρ.γ =′
NF δ + ρ ∨ γ =NF

Ωδ ∨ (γ =NF ψδρ ∧ ρ ≺ γ), where =NF is defined as in definition 3.11 of [Se95].
C(α, β) can be defined easily as a primitive recursive set.

(b) For X being a finite subset of N we define Hγ(X) := {γ ∈ OT n0
| ∀β, γ ∈ OT n0

.(X∩
OT n0

⊂ C(α, β) ∧ γ ≺ α) → γ ∈ C(α, β)}.
Note that the condition X ∩OT n0

⊂ C(α, β) is primitive recursive, since X is finite.

(c) Hγ [θ](X) := Hγ(k(θ) ∪X).
α ∈ Hγ [θ] :⇔ α ∈ Hγ [θ](∅).
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We check easily, that for Cκ(α), as defined in [Se95], definition 3.9., we have Cκ(α) =
C(α,ψκα). The properties in [Bu92], lemma 4.4 b - d, 4.5 - 4.7 follow now directly from
the properties of the ordinal denotation system in [Se95].

Definition 10 (see theorem 3.8 of [Bu92]).

Inductive definition of Hγ [θ] `
α
ρ Γ:

Assume {α} ⊂ k(Γ) ⊂ Hγ [θ]. Then we can conclude Hγ [θ] ` Γ, iff one of the following
cases holds:
(
∧

)
∧
ι∈J φι ∈ Γ ∧ ∀ι ∈ J.∃αι ≺ α.(H[θ, ι] `αι

ρ Γ, φι)
(
∨

)
∨
ι∈J φι ∈ Γ ∧ ∃ι0 ∈ J.∃α0 ≺ α.(H[θ] `α0

ρ Γ, φι0 ∧ ι0 η J ∩ (α+ 1))
(Cut) rk(ψ) ≺ ρ ∧ ∃α0 ≺ α.(H[θ] `α0

ρ Γ, ψ ∧H[θ] `α0
ρ Γ,¬ψ).

(Ref) ∃z ∈ Lκ.φ
(a,κ) ∈ Γ ∧H[θ] `α0

ρ Γ, φ ∧ α0 + 1 ≺ α ∧ φ ∈ Σ(κ) ∧ κ ∈ R.

One sees easily, that we can formalise H-controlled derivations in a similar way as in
definition 8.
Now in [Bu92] lemma 3.9, 3.13 - 3.17 with H replaced by Hγ [θ] and by omitting all
conditions on H (we are fulfilled), and lemma 3.10, 3.11 with H replaced by Hγ and again
by omitting conditions on H, further lemma 4.7, theorem 4.8 and the corollary, follow with
the same proofs and can be formalised in ML1W . Theorem 3.12 reads now as follows:

Theorem 11 For each theorem φ of KPI+
U n0

there exists an m < ω such that with

λ := ΩI+m for all γ Hγ `
ωλ+m

λ+m φλ.

Theorem 12 For every arithmetical formula φ, if Kpi+n0
` φ, then Hβ `γ for some

γ ≺ εΩI+n0
+1.

Proof: Let λ := ΩI+n0
.

From Kpi+n0
` φ follows by 12 H0 `ω

λ+m

λ+m φ, by [Bu92] 3.12 (adapted to our setting)

H0 `
α
λ+1 φ for some α ≺ ελ+1, by [Bu92] 4.8 Hα̂0 `

ψΩ1
α̂

ψΩ1
α̂ φ with α̂ := ωλ+1+α0 ≺ ελ+1, by

[Bu92] 3.12 with γ := φψΩ1
α̂(ψΩ1

α̂) ℵα̂ `
β
0 φ, let β := α̂.

Lemma 13 If Hρ[θ] `
α
ρ Γ,

∧
ι∈J φι, then Hρ[θ, ι] `

α
ρ Γ, φι.

Proof: If φ :=
∧
ι∈J φι is not the main formula of the last premise, the assertion follows

by IH and the same rule.
Otherwise we have the case of last rule (

∧
), Hρ[θ, ι] `

αι
ρ Γ, φι, or Hρ[θ, ι] `

αι
ρ Γ, φφι, in

which case by IH we conclude the first case. By [Bu92] lemma 3.9 (a) follows the assertion.

6 Result

Definition 14 We define a primitive recursive relation k rel l:
e rel b is false, if b 6∈ Σarith

1 .
e rel P (Sk1(0), . . . , Skl(0)) ⇔ e = 0 ∧ P (k1, . . . , kl) where on the right side stands the

8



primitive recursive relation corresponding to P .
e rel φ ∧ ψ ⇐⇒ ∃l, k.e =< l, k > ∧l rel φ ∧ k rel ψ.
e rel φ ∨ ψ ⇐⇒ ∃l, k.(e =< l, k > ∧((l = 0 ∧ krellφ) ∨ (l = 1 ∧ k rel ψ))).
e rel ∃n.φ ⇐⇒ ∃l, k.e =< l, k > ∧k rel φ[n := S l(0)].

e rel φ1, . . . , φn :⇔ e rel φ1 ∨ · · · ∨ φn.

Lemma 15 (a) For every formula φ ∈ Σarith
1 , FV (φ) ⊂ {m1, . . . ,ml}. ML1W `

∀k1, . . . , kl.((n rel φ[m1 := Sk1(0), . . . ,ml := Skl(0)]) → φ̂[m1 := k1, . . . ,ml := kl]),
where the latter is the formula in ML1W .

(b) ∀Γ ∈ Σarith
1 .∀α, ρ, δ.Hρ[θ] `

α
0 Γ → ∃n.n rel Γ.

Proof: b: by an easy induction on the rules. Note that only the rules (
∨

) and (
∧

) occur.

Theorem 16 Let φ = ∀n.ψ, ψ ∈ Σarith
1 . Assume KPI+

U n0
` φ. Then ML1W ` φ̂.

Proof: By 12 follows Hρ `
α
0 φ. Assume k : N . Then by 13 follows Hρ `

α
0 ψ[n := Sk(0)].

Then by lemma 15 follows ψ̂[m := k], therefore ∀m.ψ.

Corollary 17 ML1W proves the consistency of KPI+
U n

.
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