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Abstract

We present a constructive, predicative justification of Setzer’s Mahlo universe in type
theory. Our approach is closely related to Kahle and Setzer’s axiomatization of an ex-
tended predicative Mahlo universe in Feferman’s Explicit Mathematics, a framework with
direct access to the collection of partial functions. However, we here work directly in
Martin-Löf type theory, a theory where all functions are total. We analyze Setzer’s orig-
inal version of the Mahlo universe, as opposed to the version derived in previous work
through the modeling of Explicit Mathematics with an extended predicative Mahlo uni-
verse in type theory. We provide meaning explanations which extend and adapt those in
Martin-Löf’s article Constructive Mathematics and Computer Programming to cover the
proof-theoretically much stronger Mahlo universe. In this way, we aim to resolve a long-
standing discussion on whether the Mahlo universe is predicatively justifiable. We also
construct four models in set-theoretic metalanguage that provide mathematical support
for the meaning explanations. We prove that they are indeed models of the type theory
in question and discuss their relationship to the meaning explanations. This research is
a substantial step in the predicative justification of the consistency of proof-theoretically
strong theories. Our work thus contributes to a revised Hilbert program, aiming to over-
come the limitations implied by Gödel’s incompleteness theorem, namely that there is no
mathematical proof of the consistency of mathematical theories based on finitary methods,
except for very weak theories.

1 Introduction
In this article we commemorate that it is now more than 100 years ago since the publication of
Hermann Weyl’s Das Kontinuum [48] - the first systematic development of predicative mathe-
matics. Weyl introduced the notion of predicativity given the natural numbers. In this paper
we discuss an extended notion of predicativity including Mahlo notions in type theory.

Martin-Löf’s first published paper on type theory was entitled “An intuitionistic type theory:
predicative part” [28]. This theory had an infinite hierarchy of universes. Its proof-theoretic
strength was determined to be Γ0 [20, 21], the limit of predicativity (given the natural numbers)
in Feferman and Schütte’s sense [47, 25, 24, 18, 43, 42]. In his article Constructive Mathematics
and Computer Programming [29] Martin-Löf added W-types, and the theory became impredica-
tive in the sense of Feferman and Schütte. Nevertheless, Martin-Löf still considered the theory
predicative in an extended sense. A reason for this was that the theory was provided with
meaning explanations that suggest how the types and terms of the theory are built up from
below. They explain how the objects of the theory are trees that are built by a well-founded
process of repeated lazy evaluation of expressions to canonical form.
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Higher universes in type theory. Martin-Löf type theory was later extended with several
higher universe constructions, such as Palmgren’s universe operators, the super universe [33],
Rathjen’s superjump universes [40], and Setzer’s Mahlo universe [44]. All these extensions were
intended to be constructive and predictive in the sense of Martin-Löf’s meaning explanations.
However, the predicativity of the Mahlo universe was not so clear, especially after Palmgren
[33] discovered that adding a natural elimination rule for it led to an inconsistency. Maybe
Mahlo is a natural limit of Martin-Löf’s extended predicativity as we conjectured in our paper
on a finite axiomatisation of inductive-recursive definitions [14]?

A universe in type theory is a type closed under all standard type formers, such as
Π,Σ, 0, 1, 2,N,W, and the identity type I. Universes can either be formulated à la Russell,
where an element A : U is also a type A, or à la Tarski, where an element a : U is a “name” or
“code” of a type A and there is a decoding map T such that T a = A.

A super universe is a universe closed under an operator on families of sets that maps a
universe (Un,Tn) to the next universe (Un+1,Tn+1) in the hierarchy. One can then form an
operator mapping a super universe to the next and form a super2 universe closed under this
operator. This process can be iterated, and thus one obtains supern universes. More generally,
one can define universes closed under arbitrary operators on families of sets. A Mahlo universe
is a universe that contains all universes generated by family operators. Moreover, the latter
are subuniverses of the Mahlo universe. One can show that these subuniverses arise as special
cases of the inductive-recursive definitions in our theory IR [14]. This theory is formulated
as an extension of Martin-Löf’s logical framework [32], where there is a type Set of “sets” in
Martin-Löf’s sense: “to know a set is to know how the elements of the set are formed and how
equal elements are formed”, a phrase indicating that sets should be inductively (or inductive-
recursively) generated. Therefore, we will refer to Π,Σ, 0, 1, 2,N,W, I, etc., as set formers rather
than type formers, when we work in this version of type theory. (We remark that Martin-Löf’s
notion of “set” is different from the notion of “h-set” in homotopy type theory.)

Let f be an operator on families of sets split into two components (f0, f1) where f0 returns
the index set and f1 returns the family (see the paragraph on families of sets on p. 5 for
full details of this notation). Then we can define a subuniverse U f0 f1 : Set with decoding
T f0 f1 : U f0 f1 → Set as an instance of an inductive-recursive definition in IR. In this way Set
encodes Setzer’s Mahlo universe [44]. We call it an external Mahlo universe to contrast it with
the internal Mahlo universe that arises if we introduce a set M : Set with the Mahlo property.
This M goes beyond inductive-recursive definitions in IR.

When Martin-Löf extended his meaning explanations to the 1986 version based on a logical
framework [32], he did not not stipulate that “to know a type is to know how the objects of
the type are formed and how equal objects are formed”. (We refer to Martin-Löf’s Leiden
lectures [26, 27] for a comprehensive account of the philosophical foundations of intuitionistic
type theory with the distinction between types and sets.) The type Set is to be understood as
“open” to extension with new inductive(-recursively) defined sets when we need them. Hence,
it is not natural to add an elimination rule for it. In contrast to this, M : Set is to be understood
as “closed”. Nevertheless, as Palmgren showed, adding a natural elimination rule for it leads to
an inconsistency. This paradox may make us doubt that the internal Mahlo universe is a good
predicative set according to Martin-Löf’s conception.

Nevertheless, here we argue that the Mahlo universe is after all predicative and constructive
by giving Martin-Löf style meaning explanations for it. Our argument can be applied both to
the external and to the internal Mahlo universe, although we only discuss the somewhat simpler
external version.
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Plan of the paper. We begin by constructing a set-theoretic model of logical framework-
based type theory with Set as a Mahlo universe and U f0 f1 : Set with decoding T f0 f1 :
U f0 f1 → Set as subuniverses. This model is an adaptation of the model of IR [14], where we
interpret the the type-theoretic function spaces as the sets of all set-theoretic functions. We
work in classical set theory ZFC with a Mahlo cardinal M and an inaccessible cardinal I above it.
(Note that we use the term “set” both for sets in Martin-Löf type theory and for sets in the set-
theoretic metalanguage, so we hope this will not lead to confusion.) We interpret the collection
of all types as VI and Set as VM. Let in set theory Fam(V ) = {(X,Y ) | X ∈ V, Y : X → V } be
the families of sets in V . An operator on families of sets in the type theory is interpreted as a
function f : Fam(VM)→ Fam(VM). We then use the Mahlo property of M to show that there
is an inaccessible cardinal κf < M such that f : Fam(Vκf ) → Fam(Vκf ) and interpret the
subuniverses U f0 f1 as U f0 f1 = Vκf à la Russell, that is, the decoding T f0 f1 is interpreted
as the injection T f0 f1 : Vκf ↪−→ VM.

This first model is unnecessarily large. Therefore, we construct a second set-theoretic model
where we interpret the inductive-recursively defined type-theoretic subuniverses (U f0 f1,T f0 f1)
in set theory in terms of inductively generated graphs T f0 f1 with domain U f0 f1 in the stan-
dard set-theoretic way following Allen [9]. However, in order to interpret Set as an inductively
defined set Set we make use of the ideas behind Kahle and Setzer’s extended predicative Mahlo
universe [23, 16] in Feferman’s theory of Explicit Mathematics [19]. The key point is that in
order to add a subuniverse U f0 f1 to Set it suffices to require that the family operator f on
families of sets is total on families over the subuniverse U f0 f1 itself. Although this may seem
impredicative, we show that it results in an inductive definition of Set ⊆ VM. Moreover, we
show that T f0 f1 : U f0 f1 → Set.

We also construct a third set-theoretic model. This is a variation of the second model that is
closer to the model of the extended predicative Mahlo universe in Explicit Mathematics, where
the function f ranges over arbitrary untyped terms denoting partial functions. To approximate
this in set theory, we first replace f : Fam(VM)→ Fam(VM) by arbitrary sets f ∈ VI. Then we
show that this can be further restricted to f ∈ VM, and obtain as a small variant a fourth set
theoretic model. Note that Set and therefore also the function space Fam(Set) → Fam(Set)
are not guaranteed to be elements of VM and this model refers to local approximations of
Fam(Set) → Fam(Set). (We conjecture that Set /∈ VM provided M is the smallest Mahlo
cardinal.)

The final step is to provide Martin-Löf style meaning explanations inspired by the second
(and third and fourth) set-theoretic models.

The usual situation in type theory is that the meaning explanation for a type former is
determined by the formation rule and the introduction rules, and the computation rules for
the elimination constant are given by the equality rules. However, in the case of the Mahlo
universe, this pattern is broken. If we take the formation rule for the subuniverses U f0 f1 as a
type-checking condition (a matching condition), then we get a non-wellfounded type-checking
process, because of Palmgren’s paradox. (We remark that “type checking” here refers to the
matching of canonical terms with canonical types in Martin-Löf’s meaning explanations, and
not to the type-checking of judgments in intensional type theory, as implemented in proof
assistants.)

Instead, we let the second set-theoretic model suggest the type-checking conditions. As an
example, we give one of the type-checking conditions for the judgment A : Set. If A has the
canonical form U f0 f1, then we check whether

f0 (T f0 f1 u) (λx.T f0 f1 (t x)) : Set
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in the context u : U f0 f1, t : T f0 f1 u→ U f0 f1, and

f1 (T f0 f1 u) (λx.T f0 f1 (t x)) y : Set

in the context u : U f0 f1, t : T f0 f1 u→ U f0 f1, y : f0 (T f0 f1 u) (λx.T f0 f1 (t x)).
Note that we are only type-checking for arguments in the image of T f0 f1 : U f0 f1 → Set

and this avoids the circularity of taking U f0 f1 : Set as an argument for type-checking during
the process of type checking U f0 f1 : Set. Nevertheless, the formation rule for U f0 f1 can be
justified on this basis. Here f0 and f1 are the two components of a function f : Fam(Set) →
Fam(Set), see below for the precise definition.

In the conclusion and related work section we make some general remarks about the rela-
tionship between the meaning explanations and various mathematical models. We also discuss
the relationship between our work and Rathjen’s articles on the limits of Martin-Löf type theory
[37, 39].

There is also an appendix where we show implementations in Agda of the internal Mahlo
universe and Palmgren’s paradox.

Mahlo universes in Explicit Mathematics. Let us explain the relationship between the
present article and previous work on the extended predicative Mahlo universe in Explicit Math-
ematics. The aim of Kahle and Setzer [23] was to introduce the Mahlo universe “from below” so
that the definition has an extended predicative character. While the subuniverses of the Mahlo
universe in type theory are defined for arbitrary total functions on families of sets, Kahle and
Setzer define them for arbitrary partial functions. However, while the latter are not directly
available in Martin-Löf type theory, they are available in Explicit Mathematics, a framework
developed by Solomon Feferman [19] and further explored by Gerhard Jäger and coworkers.
Kahle and Setzer extended Explicit Mathematics with axioms for an extended predicative Mahlo
universe.

This approach was further investigated by the authors [16] with the aim of providing a
more explicit link to Martin-Löf’s conception of predicativity. To this end, a model of Explicit
Mathematics with an extended predicative Mahlo universe was implemented in an extension of
Martin-Löf type theory. The set of untyped terms of Explicit Mathematics was implemented
as a set in type theory, and on this basis the other basic notions were implemented. The ex-
tended predicative Mahlo universe was then implemented by a certain strong indexed inductive-
recursive definition that goes beyond the authors’ theories of indexed inductive-recursive defini-
tions [12, 15]. Finally, we argued for the predicativity of our extension by providing Martin-Löf
style meaning explanations for it.

When we model Explicit Mathematics with an extended predicative Mahlo universe in type
theory, we get something rather different from Setzer’s original Mahlo universe in type theory.
In this article, we return to the original formulation and show how to provide direct meaning
explanations for it.

Remarks on the notation. As already mentioned, a possible source of confusion is that we
use the term “set” to denote both sets (in Martin-Löf’s sense) in our version TTM of type theory
and as sets in the set-theoretic metalanguage. We distinguish notationally between the type
Set in type theory and its set-theoretic interpretation Set and between type-theoretic families
in Fam(V ) and set-theoretic ones in Fam(V ). Similarly, we distinguish between type-theoretic
subuniverses (U f0 f1,T f0 f1) and their set-theoretic interpretations (U f0 f1, T f0 f1). More-
over, we distinguish notationally between the type-theoretic Cartesian products (dependent
function spaces (x : σ) → τ) and disjoint unions (dependent products Σx : σ.τ) and their
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interpretations in terms of
∏

and
∑

in set theory. Apart from these distinctions, we usually
overload notation and use identical notation for type-theoretic concepts and their set-theoretic
interpretation. For example, function application is always written f a in TTM and often also
in set theory, although sometimes we write f(a) in set theory. Similarly, we write f : A → B
or g :

∏
X:AB(x) instead of f ∈ (A→ B) and g ∈

∏
X∈AB(x) in set theory.

Notations for families of sets. In type theory, by (X,Y ) : Fam(Set) we mean X : Set,
Y : X → Set. By f : Fam(Set)→ Fam(Set) we mean the two components

f0 : (X : Set)→ (Y : X → Set)→ Set
f1 : (X : Set)→ (Y : X → Set)→ f0 X Y → Set

In set theory we have already defined Fam(V ) above. After introducing f : Fam(V ) →
Fam(V ), we use f0, f1 for the two set-theoretic components of that function, that is,

f0 :
∏
X:V

∏
Y :X→V V f0 X Y = π0(f (X,Y ))

f1 :
∏
X:V

∏
Y :X→V (f0 X Y → V ) f1 X Y Z = π1(f (X,Y )) Z

Set-theoretic universes à la Tarski are given as (U , T ) ∈ Fam(V ) for some V . When referring
to a universe, we often just refer to U and leave T implicit. We also define T Fam(U) :=
T Fam(U , T ) := {(x, y) | x ∈ U ∧ y : T x → U}. If f : T Fam(U) → T Fam(U) then we define
its two components

f0 :
∏
x:U

∏
y:T x→U U f0 x y = π0(f (x, y))

f1 :
∏
x:U

∏
y:T x→U (T (f0 x y)→ U) f1 x y z = π1(f (x, y)) z

In type theory, universes à la Tarski are given as (U, T ) : Fam(Set), where we again often refer
to the universe as U and leave T implicit. By (x, y) : TFam(U, T ) or (x, y) : TFam(U) we mean
x : U and y : T x→ U , and by f : TFam(U)→ TFam(U) we mean its two components

f0 : (x : U)→ (y : T x→ U)→ U
f1 : (x : U)→ (y : T x→ U)→ T (f0 x y)→ U

Agda code and Git repository. All display style Agda code has been type-checked in
Agda and directly imported via the literal Agda framework into this paper. The Agda code is
available in the Git repository [17]. Here the reader can also find full definitions of the standard
set formers of Martin-Löf type theory and the closure of the external Mahlo universe under
those. Moreover, the repository also includes an html version which doesn’t require installation
of Agda.

2 Type theory with an external Mahlo universe
We work in a version of Martin-Löf type theory based on a logical framework (see, for example,
[32, 14]). This logical framework is a typed lambda calculus with dependent function types
written (x : σ)→ τ . Moreover, it has a type Set of sets in Martin-Löf’s sense, and each object
A : Set is also a type A.

On this basis, we can introduce formation, introduction, and elimination rules for the set
formers by adding the respective constants with their types. The equality rules are represented
by equations between expressions of the same type.
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The proof assistant Agda [8] can be used for implementing this version of Martin-Löf type
theory. For example, here is a definition of the set of natural numbers with the primitive
recursion combinator R in Agda:

data N : Set where
O : N
s : N → N

R : {C : N → Set} → C O → ((n : N) → C n → C (s n)) → (c : N) → C c
R d e O = d
R d e (s n) = e n (R d e n)

(The curly braces in {C : N → Set} specify that C is an implicit argument.)
We now implement the inductive-recursive definition of the subuniverses U f0 f1 : Set with

decodings T f0 f1 : U f0 f1 → Set in Agda. Recall that such a subuniverse is closed under
standard set formers such as Π,Σ, 0, 1, 2,N,W, and I, and also under arbitrary operators f on
families of sets (with components f0 and f1). It has two constructors c0 and c1 that express
closure under the two components f0 and f1, respectively. We omit the closure rules under the
standard set formers and only display the Agda code for closure under f .

data U (f0 : (X0 : Set) → (X0 → Set) → Set)
(f1 : (X0 : Set) → (X1 : X0 → Set) → f0 X0 X1 → Set) : Set where

c0 : (x0 : U f0 f1)
→ (T f0 f1 x0 → U f0 f1)
→ U f0 f1

c1 : (x0 : U f0 f1)
→ (x1 : (T f0 f1 x0 → U f0 f1))
→ T f0 f1 (c0 x0 x1)
→ U f0 f1

T : (f0 : ((X0 : Set) → (X0 → Set) → Set))
(f1 : ((X0 : Set) → (X1 : X0 → Set) → f0 X0 X1 → Set))
→ U f0 f1 → Set

T f0 f1 (c0 x0 x1) = f0 (T f0 f1 x0) (λ z → T f0 f1 (x1 z))
T f0 f1 (c1 x0 x1 t) = f1 (T f0 f1 x0) (λ z → T f0 f1 (x1 z)) t

In this way, the type Set implements the external Mahlo universe: it contains U f0 f1 and
this is a subuniverse à la Tarski of Set with a decoding map T f0 f1.

We will refer to the basic type theory as TT. It consists of the following parts:
• Martin-Löf’s logical framework, that is, dependent type theory with dependent function
types, a type Set, and for each A : Set a type A of its elements.

• Constants and equations for the standard set formers: Π,Σ, 0, 1, 2,N,W, and I. We have
shown the Agda code for N and leave it to the reader to define the others.

We then extend our theory with the following:
• Constants and equations for the subuniverse à la Tarski as shown in the Agda code above.
These consist of the typing rules for the set former U with decoding T and the constructors
c0 and c1 that are codes for the family operator (f0, f1) with their decoding equations.
Moreover, there are constructors for codes for the standard set formers with their decoding
equations, but these are not displayed in the Agda code above.

We call the resulting theory TTM.
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3 First set-theoretic model
In our article on the finite axiomatization of induction-recursion [14] we showed the consistency
of the theory IR by constructing a model in classical set theory where function types are
interpreted as full set-theoretic function spaces. We remark again that the theory presented in
the previous section is a subtheory of IR and hence we can refer to the same model. However,
to prepare for the second extended predicative model, we give an alternative presentation of
such a set-theoretic model.

ZFC with one Mahlo cardinal and one inaccessible above has much more proof theoretic
strength than what is actually needed. Setzer [46] created a model of the internal Mahlo universe
in Kripke-Platek set theory with one recursively Mahlo ordinal and finitely many admissibles
above KPM+. Together with [44] this shows that the proof-theoretic strength of the internal
Mahlo universe (which does not make use of the logical framework) is that of KPM+. Note
that KPM+ is a slight extension of the theory KPM analysed by Rathjen [35, 36]. The type
theory of the external Mahlo universe using the logical framework can be interpreted in the
type theory of the external Mahlo universe and therefore also in KPM+.

Since our aim here is to motivate the meaning explanations given in Section 6, we will work
in the more familiar setting of ZFC with a strongly Mahlo cardinal M and a strongly inaccessible
cardinal I above it. It should be possible with some extra work to construct variants of our
models in weaker set theories such as KPM+.

We recall some definitions.

Definition 3.1. A cardinal I is strongly inaccessible iff it is transfinite, a strong limit, and
regular:

ℵ0 < I α < I
2α < I

α < I β : α→ I∨
i<α βi < I

We will use the fact that if I is strongly inaccessible, then VI is closed under the interpretation
of the standard type-theoretic set formers.

Definition 3.2. A cardinal M is strongly Mahlo iff each normal (strictly monotone and con-
tinuous) function h : M→ M has a strongly inaccessible fixed point κh.

It follows that M is strongly inaccessible and h : κh → κh. In the presence of GHC, strongly
and weakly inaccessible and strongly and weakly Mahlo coincide, and in the sequel, we will
only say “inaccessible” and “Mahlo”.

Mahlo cwfs. Categorically, the version of type theory based on the logical framework is
modelled by a category with families (cwf) [11] with extra structure. We only give an overview
here and refer to [10, 22] for details.

A cwf has four components (Ctx,Hom, Type, Tm), where Ctx and Hom denote the set of
objects and the family of morphisms of the category of contexts, and Type and Tm are the
components of the family-valued functor from the category of contexts to the category of families
of terms indexed by types. The extra structure for the logical framework is a Π-structure for
modelling dependent function types and a structure for modelling the type Set, such that for
each set A there is a type of elements El(A). Moreover, we need extra structure for all the
standard set formers Π,Σ, 0, 1, 2,N,W, I and the subuniverse set former U with decoding map
T. This amounts to requiring one constant for each formation rule, one for each introduction
rule and one for each elimination rule. These are subject to certain equations expressed by the
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equality rules for the respective set formers. We call a cwf with all this extra structure, a Mahlo
cwf.

We refer to Hofmann [22] for the interpretation of Martin-Löf type theory in cwfs with
extra structure corresponding to the type theory. Hofmann only spells out the details for type
theory with dependent function types. This is the crucial part of the interpretation of the
formal system TTM in an arbitrary Mahlo cwf. We have not carried out the details of this
generalisation, but we do not expect any difficulties.

The first model as a Mahlo cwf. Let M be Mahlo and I > M be inaccessible:

• Let Ctx = VI and Hom(∆,Γ) = ∆→ Γ, the set of functions from ∆ to Γ.

• Let Type = VI, Type(Γ) = Γ→ Type, and Tm(Γ, A) =
∏
γ∈ΓAγ for A ∈ Type(Γ).

• VI is closed under dependent function types because of inaccessibility of I.

• Let Set = VM ∈ VI and VM ⊆ VI.

• VM is closed under the standard set formers because of inaccessibility of M.

• The structure for the subuniverses will be given below.

We refer to Aczel [6] for details of the set-theoretic interpretation of Martin-Löf type theory.
Aczel also shows that this interpretation can be carried out in CZF (Aczel’s constructive version
of ZF) with the regular extension axiom and suitable universe axioms. Palmgren [34] imple-
mented an interpretation of Martin-Löf type theory in Aczel’s iterative set model of CZF in the
proof assistant Agda. However, Mahlo universes are not covered in these works.

In order to interpret the subuniverses we prove the following.

Theorem 3.3. Let f : Fam(VM) → Fam(VM). Then there exists an inaccessible cardinal κf
such that f : Fam(Vκf ) → Fam(Vκf ). Furthermore, if we define U f0 f1 = Vκf ∈ VM and
T f0 f1 : Vκf ↪−→ VM, T f0 f1 x = x then (U , T ) is a Russell-style model of the Tarski-style
subuniverse closed under f .

Proof: We define a normal function hf (α) for α < M by transfinite recursion:

hf (0) = 0

hf (α+ 1) =
∨

x∈Fam(Vα)

rank(f(x)) ∨ (hf (α) + 1)

hf (λ) =
∨
α<λ

hf (α) for λ limit ordinal

It follows by induction on α that hf (α) < M: The cases α = 0 and α = λ are immediate by the
induction hypothesis and regularity of M. In the case of α = α′ +1 we have by inaccessibility of
M that card(Fam(Vα)) < M, rank(f(x)) < M for x ∈ Fam(Vα), and therefore hf (α+ 1) < M
by the induction hypothesis and regularity of M.

Since M is Mahlo and hf is normal, there exists an inaccessible κf < M such that hf : κf →
κf . We conclude that f : Fam(Vκf )→ Fam(Vκf ). Since κf is inaccessible, Vκf is closed under
the interpretation of the standard type-theoretic set formers.
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4 Second set-theoretic model
We now provide an alternative interpretation where Type ⊆ VI,Set ⊆ VM, and the graph of
the decoding function T f0 f1 ⊆ Vκf × Vκf are all inductively generated. Moreover, we define
U f0 f1 as the domain of T f0 f1 and prove T f0 f1 : U f0 f1 → Set.

Rule sets. Inductive definitions in set theory are often presented in terms of fixed points
of monotone operators. However, here we instead use Aczel’s rule sets [1]. This lets us write
set-theoretic rules so that they look like syntactic inference rules. Since each rule set determines
a monotone operator on subsets of the base set of the rule set, this is only a presentation issue.
We recall some definitions:

Definition 4.1. A rule
u

v

on a base set U is a pair of sets u ⊆ U (of premises) and v ∈ U (the conclusion).
Let Φ be a set of rules on U . A set w is Φ-closed iff

u

v
∈ Φ and u ⊆ w implies v ∈ w.

There is a least Φ-closed set

I(Φ) =
⋂
{w ⊆ U | w Φ−closed},

the set inductively defined by Φ [1].

Inductive definition of the subuniverses. Let M be a Mahlo cardinal,
f : Fam(VM) → Fam(VM), and κf < M be an inaccessible cardinal as in Theorem 3.3 in
Section 3.

Let c0 and c1 be set-theoretic encodings of the constructors for U f0 f1 that express closure
under f0 and f1. One version would be to define

c0 x y := (0, x, y) c1 x y t := (1, x, y, t)

(to be precise, (0, x, y) := (0, (x, y)) and similarly for (1, x, y, t)).
We define the subuniverses by first inductively generating the graphs of the decoding func-

tions T f0 f1 by a rule set on Vκf × Vκf . This rule set has rules for closure under f0 and f1
with respective codes c0 and c1:

{{(x,X)} ∪ {(y z, Y z)|z ∈ X}
(c0 x y, f0X Y ) | x,X ∈ Vκf , y, Y : X → Vκf }

∪

{{(x,X)} ∪ {(y z, Y z)|z ∈ X}
(c1 x y t, f1X Y t) | x,X ∈ Vκf , y, Y : X → Vκf , t ∈ f0X Y }

In addition to that, we have rules expressing that these subuniverses à la Tarski are closed under
the standard set formers. For example, the rule set for closure under Σ and N is as follows:

{{(x,X)} ∪ {(y z, Y z)|z ∈ X}
(Σ̂ x y,

∑
z ∈ X.Y z)

| x,X ∈ Vκf , y, Y : X → Vκf } ∪ {
∅

(N̂, ω)
}

9
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The code constructors Σ̂ and N̂ are defined in a similar way to c0 and c1.
We can now prove by induction on the rule set that T f0 f1 is a function. Let U f0 f1 ⊆ Vκf

be the domain of T f0 f1. Hence, T f0 f1 : U f0 f1 → Vκf .
Note that we have not yet defined Set and that T f0 f1 : U f0 f1 → Vκf is defined for an

arbitrary operator f on Fam(VM) rather than on Fam(Set). This is analogous to Kahle and
Setzer’s preuniverses PU[a, f ] in Explicit Mathematics [23, 16]. These are defined for arbitrary
a ∈ Tm and f : Tm → Tm and not only for a ∈ < and f : < → <, where Tm is the set of
untyped closed terms and < ⊆ Tm is the external Mahlo universe.

Inductive definition of the external Mahlo universe. The following is a rule set on VM
that (together with rules expressing that Set is a universe à la Russell closed under the standard
set formers) inductively generates the external Mahlo universe Set ⊆ VM:

{

{f0 (T f0 f1 x0) ((T f0 f1) ◦ x1) | (x0, x1) ∈ T Fam(U f0 f1)}
∪ {f1 (T f0 f1 x0) ((T f0 f1) ◦ x1) t | (x0, x1) ∈ T Fam(U f0 f1), t ∈ f0 (T f0 f1 x0) ((T f0 f1) ◦ x1)}

U f0 f1

| f : Fam(VM)→ Fam(VM)}

The premises of this rule set express that the family operator f maps a family (x0, x1) ∈
T Fam(U f0 f1) to a family (X0, X1) ∈ Fam(Set), where X0 = T f0 f1 x0 and X1 = (T f0 f1) ◦
x1. This corresponds to Kahle and Setzer’s independence condition [23, 16].

As already mentioned, we need to add rules for Set that express closure under all standard
set formers. For example, the rule set for closure under Σ and N is as follows:

{{X} ∪ {Y z | z ∈ X}∑
z ∈ X.Y z

| X ∈ VM, Y : X → VM} ∪ {
∅
ω
}

Theorem 4.2. Let f : Fam(Set) → Fam(Set) and define f ′ : Fam(VM) → Fam(VM) by
f ′(X,Y ) = f(X,Y ) if (X,Y ) ∈ Fam(Set) and f ′(X,Y ) = (∅, ∅) otherwise. Then
T f ′

0 f
′
1 : U f ′

0 f
′
1 → Set.

Proof: We prove by induction on the rule set for T f ′
0 f

′
1 that if (x,X) ∈ T f ′

0 f
′
1, then

X ∈ Set. This implies the theorem. Assume x,X ∈ Vκf , y, Y : X → Vκf , (x,X) ∈ T f ′
0 f

′
1,

∀z ∈ X.(y z, Y z) ∈ T f ′
0 f

′
1. By induction hypothesis we have X ∈ Set, ∀z ∈ X.Y z ∈ Set.

Then (X,Y ) ∈ Fam(Set) and therefore f ′(X,Y ) = f(X,Y ) ∈ Fam(Set). Hence f ′
0X Y =

f0X Y ∈ Set, and f ′
1X Y t = f1X Y t ∈ Set for t ∈ f ′

0X Y in the conclusion of the second rule.
The case of the basic set formers follows similarly by IH and the closure of Set under the basic
set formers.

Inductive definition of the collection of types. The following is a rule set on VI that
inductively generates the collection of types Type ⊆ VI:

{ ∅
Set } ∪ {

∅
X
| X ∈ Set} ∪ {{X} ∪ {Y x | x ∈ X}∏

x∈X Y x
| X ∈ VI, Y : X → VI}

The second model as a Mahlo cwf.

• Each context in Ctx has a length n. We define the set of contexts of length n by induction
on n:

10
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– The empty context 1 = {()} ∈ Ctx is the only context of length 0, where () = ∅ is
the empty sequence.

– Contexts of length n+ 1 have the form
∑
γ∈ΓAγ ∈ Ctx, where Γ ∈ Ctx has length n

and A ∈ Type(Γ) = Γ → Type. The elements are sequences (γ, a), where γ ∈ Γ and
a ∈ Aγ.

• Hom(∆,Γ) = ∆→ Γ.

• Tm(Γ, A) =
∏
γ∈ΓAγ.

• Type is defined as closed under the Cartesian product
∏

of families of sets in VI. It follows
that the cwf has a structure for Π-types.

• Type is defined to contain and include Set, that is, Set ∈ Type and Set ⊆ Type.

• Set is defined to be closed under the standard set formers.

We interpret the subuniverse closed under f : Fam(Set)→ Fam(Set) as U f ′
0 f

′
1 with decoding

T f ′
0 f

′
1 : U f ′

0 f
′
1 → Set as in Theorem 4.2.

• To prove U f ′
0 f

′
1 ∈ Set, we assume (x0, x1) ∈ T Fam(U f ′

0 f
′
1) and define X0 = T f ′

0 f
′
1x0

and X1 = (T f ′
0 f

′
1) ◦ x1. Hence (X0, X1) ∈ Fam(Set) and all the premises of the rule

that adds U f ′
0 f

′
1 to Set in the inductive generation of Set are satisfied.

• T f ′
0 f

′
1 : U f ′

0 f
′
1 → Set for f : Fam(Set)→ Fam(Set) follows by Theorem 4.2.

• U f ′
0 f

′
1 ∈ Set and T f ′

0 f
′
1 : U f ′

0 f
′
1 → Set is a universe à la Tarski closed under all standard

set formers and under the family operator (f0, f1) with codes (c0, c1). The typing rules
for the constructors c0 and c1 of U f ′

0 f
′
1 and the equality rules for T f ′

0 f
′
1 are immediate

from the rule set for T f ′
0 f

′
1.

5 Third and fourth set-theoretic models
In the previous Section 4 we referred to the set of functions f : Fam(VM) → Fam(VM) when
defining U f0 f1 ∈ VM. In the extended predicative Mahlo universe [23] this impredicativity
was avoided by referring to the set of partial functions in Explicit Mathematics. Moreover, we
transferred this construction to type theory by implementing a model of Explicit Mathematics
[16].

In this section, we use a similar idea to construct a variation of the second set-theoretic
model, where the partial functions in Explicit Mathematics are approximated by arbitrary sets
in set theory. We use the fact that we can define (f a) for arbitrary sets f and not only for
functions in set theory:

f a :=
⋃
{x | (a, x) ∈ f}

We thus replace the partial functions in Explicit Mathematics by arbitrary sets in VI in set
theory.

Let f0, f1 : VI and define T f0 f1 as the set inductively generated by the following rule set
on VM × VM. As before, this rule set needs to be augmented by rules for closure under the
standard set formers (in the previous version we didn’t need the conditions that the result are
in VM, since that was guaranteed by f : Fam(VM)→ Fam(VM)):

{{(x,X)} ∪ {(y z, Y z)|z ∈ X}
(c0 x y, f0X Y ) | x,X ∈ VM, y, Y : X → VM, f0X Y ∈ VM}

11
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∪

{{(x,X)} ∪ {(y z, Y z)|z ∈ X}
(c1 x y t, f1X Y t) | x,X ∈ VM, y, Y : X → VM, f0X Y ∈ VM, t ∈ f0X Y, f1X Y t ∈ VM}

As before, we can prove that T f0 f1 is a function. Let U f0 f1 := dom(T f0 f1) ⊆ VM. We get
T f0 f1 : U f0 f1 → VM.

We define for f0, f1 ∈ VI the two components of the lifting of a partial function (f0, f1) from
Fam(VM) to Fam(VM) to a partial function (fT0, fT1) from T Fam(U f0, f1) to Fam(VM). Let
x = (x0, x1):

fT0(x) := f0 (T f0 f1 x0) ((T f0 f1) ◦ x1)
fT1(x, t) := f1 (T f0 f1 x0) ((T f0 f1) ◦ x1) t
fT (x) := (fT0(x), λt ∈ fT0(x).fT1(x, t))

As in [16, 23] we define (T f0 f1) to be independent of VM, if the conditions

f0X Y ∈ VM f1X Y t ∈ VM

are always fulfilled:

Indep(T f0 f1) :⇔ ∀x ∈ T Fam(U f0 f1).fT0(x) ∈ VM ∧ ∀t ∈ fT0(x).fT1(x, t) ∈ VM

Lemma 5.1. Let f0, f1 ∈ VI and Indep(T f0 f1). Then U f0 f1 ∈ VM and T f0 f1 : U f0 f1 →
VM.

Proof. Since the base set of the rule set for T f0 f1 is VM × VM it follows immediately that
T f0 f1 : U f0 f1 → VM.

To show U f0 f1 ∈ VM we show that there is an inaccessible κf such that T f0 f1 ⊆ Vκf×Vκf .
Define a normal function hf : M→ M by transfinite recursion:

hf (0) := 0
hf (α+ 1) := (

∨
x∈T Fam(U f0 f1)∩Vα rank(fT (x))) ∨ (hf (α) + 1)

hf (λ) :=
∨
α<λ hf (α) for λ limit ordinal

It follows by induction on α that hf (α) < M.
Let κf be an inaccessible fixed point of hf . Then Vκf is closed under the standard set

formers. Furthermore, if the premises of the main rules for c0 x y or c1 x y t are in T f0 f1∩Vκf ,
then the conclusion is also in T f0 f1 ∩ Vκf . Therefore, T f0 f1 ⊆ Vκf , T f0 f1 ∈ Vκf+1 ⊆
VM.

We now define Set by the following rule set on VI (which needs to be augmented by rules
for closure under the standard set formers):

{
{fT0(x) | x ∈ T Fam(U f0 f1)} ∪ {fT1(x, t) | x ∈ T Fam(U f0 f1), t ∈ fT0(x)}

U f0 f1 | f0, f1 ∈ VI}

Lemma 5.2. Set ⊆ VM

Proof. Proof by induction on the rule set for Set. For the standard set formers this follows
from the induction hypothesis. Assume that U f0 f1 ∈ Set is introduced by its rule. Then by
the induction hypothesis applied to the assumptions of the rule we have Indep(T f0 f1) and
therefore by Lem. 5.1 we have U f0 f1 ∈ VM.

12
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Lemma 5.3. Let U f0 f1 ∈ Set be introduced by its rule, and t ∈ U f0 f1. Then T f0 f1 t ∈ Set.

Proof. u ∈ U f0 f1 ⇔ ∃t.(u, t) ∈ T f0 f1, and then t = T f0 f1 u. We show by induction on
(u, t) ∈ T f0 f1 that t ∈ Set.
For the standard set formers this follows by the induction hypothesis and closure of Set under
the basic set constructions.
Assume (u, t) = (c0 x0 x1, f0X0X1) introduced by its rule. Then (x0, X0) ∈ T f0 f1 and ∀t′ ∈
X0.(x1 t

′, X1 t
′) ∈ T f0 f1. By U f0 f1 ∈ Set introduced by its rule it follows that t = f0X0X1 =

fT0(x) ∈ Set.
Assume (u, t) = (c1 x0 x1 t, f1X0X1 t

′) introduced by its rule. Then (x0, X0) ∈ T f0 f1, and
∀t′′ ∈ X0.(x1 t

′′, X1 t
′′) ∈ T f0 f1. Furthermore, t′ ∈ f0X0X1. By U f0 f1 ∈ Set introduced by

its rule it follows that t = f1X0X1 t
′ = fT1(x, t′) ∈ Set.

Lemma 5.4. Set is a model of the external Mahlo universe.

Proof. Set is by assumption closed under the standard set formers.
Assume f = (f0, f1) : Fam(Set) → Fam(Set). Then f ∈ VI. We need to show that U f0 f1 ∈
Set and (c0 f0 f1, c1 f0 f1) : T Fam(U f0 f1)→ T Fam(U f0 f1).
Claim: ∀(u, t) ∈ T f0 f1.t ∈ Set (1)
Proof of (1) by induction on (u, t) ∈ T f0 f1:
If (u, t) is introduced by basic set constructions this follows by induction hypothesis.
Let (u, t) = (c0 x0 x1, f0X0, X1) introduced by its rule. By induction hypothesis X0 ∈ Set and
for z ∈ X0 we have X1 z ∈ Set. Therefore, t = f0X0X1 ∈ Set.
Let (u, t) = (c1 x0 x1 t

′, f0X0, X1 t
′) be introduced by its rule. By the induction hypothesis

X0 ∈ Set and for z ∈ X we have X1 z ∈ Set. Furthermore, t′ ∈ f0X0X1. Therefore
f1X0X1 t

′ ∈ Set.
This concludes the proof of (1).

It follows that if (x0, x1) ∈ T Fam(U f0 f1) then (T f0 f1 x0, (T f0 f1) ◦x1) ∈ Fam(Set), and
therefore the assumptions of the rule for U f0 f1 ∈ Set are fulfilled and therefore U f0 f1 ∈ Set.
Therefore, Indep(U f0 f1), and we get (c0 f0 f1, c1 f0 f1) : T Fam(U f0 f1)→ T Fam(U f0 f1)

We show that we can restrict f0, f1 ∈ VI to f0, f1 ∈ VM:
We show first that U f0 f1 depends only on the restrictions of f0, f1 to T Fam(U f0 f1):
We define a more general version of (fT0, fT1), namely the lifting of a partial function (f ′

0, f
′
1)

from Fam(VM) to Fam(VM) to a partial function (f ′Tf0,f1,0, f
′Tf0,f1,1) from T Fam(U f0, f1)

to Fam(VM):
f ′Tf0,f1,0(x) := f ′

0 (T f0 f1 x0) ((T f0 f1) ◦ x1)
f ′Tf0,f1,1(x, t) := f ′

1 (T f0 f1 x0) ((T f0 f1) ◦ x1) t

Lemma 5.5. Assume

∀x ∈ T Fam(U f0 f1).fT0(x) = f ′Tf0,f1,0(x) ∧ ∀t ∈ fT0(x).fT1(x, t) = f ′Tf0,f1,1(x, t)

Then T f0 f1 = T f ′
0 f

′
1.

Proof. One shows by straightforward induction on (u, t) ∈ T f0 f1 that (u, t) ∈ T f ′
0 f

′
1. Then

we show by induction that for (u, t) ∈ T f ′
0 f

′
1 we have (u, t) ∈ T f0 f1.

We say (f0, f1) and (f ′
0, f

′
1) coincide on T Fam(U f0 f1) if the assumptions of the lemma 5.5

are fulfilled.
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Corollary 5.6. Assume U f0 f1 ∈ Set is introduced by its rule. Let

f0� := {(X,Y, f0X Y ) | (x,X) ∈ T f0 f1, y, Y : X → VM.∀z ∈ X.(y z, Y z) ∈ T f0 f1}
f1� := {(X,Y, t′, f1X Y t) | (x,X) ∈ T f0 f1, y, Y : X → VM.∀z ∈ X.(y z, Y z) ∈ T f0 f1, t

′ ∈ f0X Y }

Then (f0, f1) and (f0�, f1�) coincide on T Fam(U f0 f1) and T Fam(U f0 f1) = T Fam(U f0� f1�).
Furthermore, f0�, f1�∈ VM.

Fourth set-theoretic model. This is obtained by replacing the condition f0, f1 ∈ VI by
f0, f1 ∈ VM.

Corollary 5.7. Let Set′ be defined by the same rules as for Set, but replacing the condition
f0, f1 ∈ VI by f0, f1 ∈ VM. Then Set′ = Set and therefore Set′ is a model of the external Mahlo
universe.

Note that if (f0, f1) : Fam(Set)→ Fam(Set), it is not necessarily the case that f0, f1 ∈ VM,
since it is not necessarily the case that Set ∈ VM (provided that M is the least Mahlo cardinal).
However, we get f0�, f1�∈ VM.

Replacing Set by a Tarski Universe. If one wants to replace this model by a Tarski style
model for Set, one needs to replace the rule set for the external Mahlo rules by a rule set
generating the graph of the decoding function El for Set in a similar way as the inductive
definition of the decoding function T f0 f1 for the subuniverses U f0 f1. These rules generate
pairs (a,A) where a is a code and A is the result of applying the decoding function El to it.

The reader might expect that the closure rule under U f0 f1 should have the conclusion
(u f0 f1,U f0 f1). However, that would not work: f0, f1 range over all elements in Fam(VM),
and therefore u f0 f1 is not an element of VM. Actually, if one could define this, one could define
a variant of Palmgren’s paradox since one can extract from the code of u f0 f1 the functions
f0, f1. One solution would be to replace it by u f0� f1�, as defined in Corollary 5.6. Since
T Fam(U f0 f1) = T Fam(U f0� f1�), that definition would create a function.

6 Meaning explanations
We shall now present informal meaning explanations for our theory TTM. Meaning explanations
for extensional type theory were introduced by Martin-Löf [29] and elaborated on in the book
Intuitionistic Type Theory [30]. Further discussion of the meaning of the logical framework
based version of type theory with its distinction between types and sets can be found in Martin-
Löf’s Leiden lectures [26, 27].

We will not elaborate on the meaning explanations for the basic type theory TT, where we
mostly follow [29]. A difference is that we do not explain type equality extensionally (two types
are equal iff they have the same elements) but in the same way as equality of elements of a
universe [13]. Regarding the logical framework, we explain Set in the same way as the universes
in [29]. However, adding closure under subuniverses in the extended theory TTM, so that Set
becomes an external Mahlo universe, requires special provisions.

To explain the meaning of the judgment a : A we first specify the canonical forms and the
computation rules associating each term with its canonical form. Canonical forms are terms of
the form c a1 · · · an, where c is a constructor. Note that we have lazy canonical terms – it is not
required that a1, . . . , an are canonical. If a has canonical form c a1 · · · am and A has canonical
form C b1 · · · bn, then the meaning of a : A is specified by matching conditions which state
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whether the element constructor c matches the type constructor C, and if so, the conditions on
the subterms. For example, the matching conditions for natural numbers are that 0 matches
N, and succ a matches N, under the condition a : N. The matching condition for W-types is
that sup a b matches WAB under the condition that a : A and b : B a→WAB.

We assume that the canonical forms, the computation rules, and the matching conditions
are already specified for TT and only list those specific to TTM.

New canonical terms. These are terms of the form U f0 f1, c0 u t, and c1 u t b, where
f0, f1, u, t, b are terms (not necessarily canonical). U is a set constructor and c0 and c1 are
element constructors.

New computation rules. These correspond to the two new equality rules for T. The canon-
ical form of T f0 f1 a is v if either

• the canonical form of a is c0 u t, and the canonical form of f0 (T f0 f1 u) ((T f0 f1) ◦ t) is
v;

• or the canonical form of a is c1 u t b, and the canonical form of f1 (T f0 f1 u) ((T f0 f1)◦ t) b
is v.

New matching conditions.

• The canonical form U f0 f1 matches the canonical form Set. The judgment is valid under
the conditions that

f0 (T f0 f1 u) (λx.T f0 f1 (t x)) : Set

in the context u : U f0 f1, t : T f0 f1 u→ U f0 f1, and

f1 (T f0 f1 u) (λx.T f0 f1 (t x)) b : Set

in the context u : U f0 f1, t : T f0 f1 u→ U f0 f1, b : f0 (T f0 f1 u) (λx.T f0 f1 (t x)).

• We then have matching conditions corresponding to the U-introduction rules.

– The canonical form c0 u t matches the canonical form U f0 f1. The judgment is valid
under the condition that u : U f0 f1 and t : T f0 f1 u→ U f0 f1.

– The canonical form c1 u t b matches the canonical form U f0 f1. The judgment is
valid under the conditions that u : U f0 f1 and t : T f0 f1 u→ U f0 f1, and b : f0 u t.

– Since U f0 f1 is closed under all the standard set formers, we also have matching
conditions for each of them.

Moreover, in all cases we check the conditions for f0 and f1 in U f0 f1 as in the first item
above.

Well-foundedness. The repeated process of lazily computing canonical forms and checking
matching conditions must be well-founded. For example, the judgment a : N is only valid if
the process of computing successive canonical forms of a produces finitely many successors and
ends with a final matching 0 : N. If this process produces an infinite sequence of successors,
then the judgment is not valid. Similarly, the judgment c : WAB must generate a well-founded
tree of matchings of canonical forms. The root of the tree is the matching of sup a b : WAB
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and the subtrees are the matchings of the canonical forms of a : A and of b x : WAB for each
x : B a.

Well-foundedness is a non-trivial issue for the Mahlo universe Set. In the second set-theoretic
model we invoked the Mahlo cardinal M and the inaccessible I > M in order to bound the size of
the inductive definitions of U f0 f1 and Set, and of the collection of all types. The rules in these
inductive definitions are set-theoretic renderings of the matching conditions in the meaning
explanations. The set-theoretic inductive generation process mimics the repeated matching
process in the meaning explanations and must be well-founded.

We emphasize that the matching condition for U f0 f1 : Set deviates from the standard
pattern where the matching conditions are immediate from the formation and introduction
rules. If we followed that pattern here, then U-formation would require us to check the more
general condition f : Fam(Set) → Fam(Set), and because of Palmgren’s paradox the well-
foundedness condition would be broken. The matching for U f0 f1 : Set would have subtree
matchings f0X0X1 : Set and f1X0X1 t : Set for (X0, X1) : Fam(Set) and t : f0X0X1. Now,
let f = (π0, π1) be the identity operator on Fam(Set), that is, π0X0X1 = X0 and π1X0X1 =
X1. Then the matching Uπ0 π1 : Set has subtrees π0X0X1 = X0 : Set for each X0 : Set
and π1X0X1 t = X1 t : Set for each X1 : X0 → Set and t : X0. One of these subtrees is
X0 = Uπ0 π1 : Set and we have a loop.

In our approach, we avoid the circularity by only matching for arguments in the image of
the subuniverse and thus we avoid matching for U f0 f1 : Set.

Matching conditions for equality judgments. The matching conditions for a : A can be
extended to typed equality judgments a = a′ : A.

For example, for natural numbers we have a = a′ : A is valid if A has canonical form N and
if a and a′ both have the canonical form 0; or if a has canonical form succ b and a′ has canonical
form succ b′ under the condition b = b′ : N.

The crucial matching condition for the external Mahlo universe Set is that a = a′ : A is
valid if A has canonical form Set and a has canonical form U f0 f1 and a′ has canonical form
U f ′

0 f
′
1 under the condition that

f0 (T f0 f1 u) (λx.T f0 f1 (t x)) = f ′
0 (T f ′

0 f
′
1u) (λx.T f ′

0 f
′
1(t x)) : Set

in the context u : U f0 f1, t : T f0 f1 u→ U f0 f1, and

f1 (T f0 f1 u) (λx.T f0 f1 (t x)) b = f ′
0 (T f ′

0 f
′
1u) (λx.T f ′

0 f
′
1(t x)) b : Set

in the context u : U f0 f1, t : T f0 f1 u→ U f0 f1, b : f0 (T f0 f1 u) (λx.T f0 f1 (t x)).

Matching conditions for other judgment forms. There are analogous matching condi-
tions for the judgments A type and A = A′.

7 Justification of the rules
We now justify the correctness of the rules of TTM with respect to the meaning explanations.
We only justify the rules that are new with respect to TT, that is, the rules for the subuniverses
displayed as Agda code. This informal justification is similar to the justification of the rules in
the second set-theoretic interpretation. We proceed with the details.

All rules assume that f0 : (X0 : Set) → (X0 → Set) → Set and f1 : (X0 : Set) → (X1 :
X0 → Set)→ f0X0X1 → Set.
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Justification of the U-formation rule. We need to justify that U f0 f1 : Set. We first make
use of the matching condition for this case:

f0 (T f0 f1 u) ((T f0 f1) ◦ t) : Set

for u : U f0 f1, t : T f0 f1 u→ U f0 f1 and

f1 (T f0 f1 u) ((T f0 f1) ◦ t) y : Set

for u : U f0 f1, t : T f0 f1 u→ U f0 f1, b : f0 (T f0 f1u) ((T f0 f1) ◦ t).
However, we know by the simultaneous justification of the typing rule for T, that T f0 f1 u :

Set and (T f0 f1) ◦ t : U f0 f1 → Set. Hence, from the typings of f0 and f1 it follows that
U f0 f1 : Set.

As already discussed above, a judgment is only valid provided we get a well-founded process
of lazily computing canonical forms and checking matching conditions. The insight that this
process is well-founded is aided by the set-theoretic interpretation of Set as inductively defined
by Aczel-style rules that correspond to the matching conditions above.

Justification of the U-introduction rules. These follow immediately from the matching
conditions for c0 and c1 and for the matching conditions for the codes for the standard set
formers.

Justification of the typing rule for T. To justify that T f0 f1 : U f0 f1 → Set we use the
computation rules for T f0 f1 a. There is one case for each constructor for U.

• If the canonical form of a is c0 u t, then the canonical form of T f0 f1 a is the same as the
canonical form of f0 (T f0 f1 u) ((T f0 f1)◦ t). However, since u : U f0 f1 and t : T f0 f1 u→
U f0 f1 by assumption, we need to check that T f0 f1 u : Set and (T f0 f1)◦ t : U f0 f1 → Set
in order to justify that T f0 f1 a : Set. Here we rely on the fact that the process of lazy
computation of canonical forms of the elements of U f0 f1 and the associated checking of
matching conditions is well-founded.

• The case where the canonical form of a is c1 a0 t b is justified in a similar way.

• There is one case for each constructor of codes for standard set formers.

This justification corresponds to the proof by rule induction that the second set-theoretic model
validates the typing rule for T in Theorem 4.2. It is tempting to say that the informal jus-
tification for this typing rule is “by induction” on the generation of the elements of U f0 f1.
However, this is misleading, since such meta-mathematical induction cannot be invoked in
these pre-mathematical justifications.

Justification of the equality rules for T. This is a typed equality (although the type is not
displayed in the Agda code) which is an easy consequence of the typing rule for T. Moreover,
since the two sides of the equations have the same canonical form, it is immediate that they
are equal.
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8 Conclusion and related research
We have provided meaning explanations for Setzer’s Mahlo universe in type theory. Thus, we
claim that it is a predicative notion in Martin-Löf’s extended sense.

The external Mahlo universe Set differs from other universe constructions in type theory
in that we cannot directly use the formation rule for the subuniverses as a matching condition
when we explain their meaning. Instead, we propose a modified condition that yields a well-
founded matching process. With the modified condition, we avoid the circularity that breaks
well-foundedness and can no longer justify the elimination rule that leads to the inconsistency
discovered by Palmgren.

We remark that the situation here is different from the extended predicative Mahlo universe
in Explicit Mathematics, which does have an elimination rule [16].

The reader may wonder why our theory TTM has subuniverses à la Tarski, but an external
Mahlo universe Set à la Russell. One reason is that we base our theory on Martin-Löf’s logical
framework (and its implementation in Agda), where Set is à la Russell, but where the inductive-
recursive definition of the subuniverses has to be implemented à la Tarski. A more fundamental
reason is that universes à la Russell reflect set constructors such as Π,Σ,N, . . .. However, the
subuniverse construction is an example of an inductive-recursive definition that reflects the
family operators f0, f1 and these are not set constructors.

Our analysis of predicativity can be adapted to the internal Mahlo universe M : Set. The
analysis is analogous and only slightly more complicated, since M is a universe à la Tarski with
decoding S : M→ Set. We refer to the Appendix for an Agda implementation.

We would like to make some remarks on the role of our second set-theoretic model as a
meta-mathematical counterpart to the pre-mathematical meaning explanations. The reader
may be surprised that we refer to several non-constructive and impredicative features: set-
theoretic function spaces that include uncomputable functions, powersets, the axiom of choice,
and classical large cardinals. The reason is that although we do not want to rely on either of
these principles, the mathematical work needed for building a set-theoretic model adds precision
and insight to the informal meaning explanations.

Our set-theoretic models could be constructivized by working in Aczel’s predicative CZF
with the regular extension axiom and suitable axioms for universes, including axioms for Mahlo
universes. However, less is gained than it seems since it would mean that we take similar
principles for granted as those which we wish to analyse. The constructivity and predicativity
of CZF (and its extensions) relies on its interpretation in Martin-Löf type theory [3, 5, 7]. In
order to interpret axioms for Mahlo universes in CZF we need Mahlo universes in type theory.

Moreover, in Section 3 we discussed the possibility of working in Kripke-Platek set theory,
but deemed it sufficient for our purpose to work in the more familiar classical set theory ZFC
with inaccessible and Mahlo cardinals.

Yet another possibility is to support the informal meaning explanations by constructing a
realizability model [2, 4, 12]. Such a model may seem more satisfactory constructively, since
it starts with a set of terms (the realizers) and explicitly formalizes the computation process.
Although this would provide a more fine-grained formal analysis of the meaning explanations,
its advantage is to some extent illusory. Such an approach also depends on the metalanguage,
which needs strong features to ensure the existence of certain inductive and inductive-recursive
definitions employed by the model.

The limits of Martin-Löf type theory according to Rathjen. In [37] and its slightly
extended version [39] (see also [38]) Michael Rathjen investigates the constructive principles of
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Martin-Löf type theory. There are several points of contact between his articles and ours.
First and foremost, Rathjen aims at establishing an upper bound on predicativity in Martin-

Löf’s sense, while we try to improve the lower bound by arguing that Setzer’s Mahlo universe is
indeed predicative in the sense of Martin-Löf’s meaning explanations. Since the two frameworks
are different, we don’t claim to establish a lower bound in a mathematical sense for what
strength can be reached using Rathjen’s setting. Whether Rathjen’s framework establishes an
upper bound on any future extension of Martin-Löf type theory is of course an open-ended
question subject to debate (see the reviews [31] and [45]).

Another similarity is that both Rathjen’s articles and the present one make use of set-
theoretic modelling of type-theoretic universes. Like us, Rathjen points out that the Mahlo
universe constitutes a substantial step beyond previously defined higher universes such as su-
peruniverses and superjump universes. On page 421 of [39] he writes:

Setzer’s theory is stronger than those based on higher type universes. It pro-
vides an important step for expanding the realm of Martin-Löf type theory. The
difference between TTM and the systems above is that TTM introduces a new
construction principle which is not foreshadowed in Martin-Löf’s original papers.
This is witnessed by the fact that models for Setzer’s Mahlo universe are generated
by a non-monotonic inductive definition (see Section 6) and, furthermore, by an ob-
servation due to Palmgren which shows it to be incompatible with elimination rules
for the universe. In a sense, TTM means a paradigm shift to a new Martin-Löf type
theory in that the rules for forming the elements of a type are no longer required to
be monotonic.

While Rathjen views the Mahlo universe as generated by a non-monotone inductive definition,
we show here how to generate the Mahlo universe and its subuniverses with their decodings by
rule sets in Aczel’s sense.

Rathjen’s upper bound is given by the theory T := KPr +∀x.∃M.(x ∈M∧M ≺1 V ), where
KPr is Kripke Platek set theory, but with the foundation scheme restricted to sets, and the
additional axiom states that every set is contained in a transitive set which is a Σ1 elementary
substructure of the set-theoretic universe V . Rathjen motivates his upper bound by an analysis
of the (possibly non-monotone) inductive definitions conjectured to be sufficient for modelling
any future extension of Martin-Löf type theory. We refer to Rathjen’s articles for details and
discussion.

Furthermore, Rathjen [37] proves in Theorem 5 that T has the same proof theoretic strength
as (Π1

2 −CA) �, that is, Π1
2-comprehension with induction on natural numbers restricted to

sets. Our lower bound is the strength of the Mahlo universe |KPM+| ([46, 44]), which is well
below |(Π1

2 −CA) � |.
It would be interesting to further investigate the relationship between Rathjen’s ideas and

ours. For example, we could try to make use of Richter and Aczel’s double inductive definitions
[41] (Def. 7.1). However, this is beyond the scope of the present paper.

A Agda implementation of the internal Mahlo universe
In Section 2 we defined the external Mahlo universe. The Git repository [17] also contains a
version with closure under the basic set constructions.

We now also define an internal Mahlo universe in Agda. We will use it in Appendix B
to implement Palmgren’s proof that adding a natural elimination rule for the internal Mahlo
universe leads to an inconsistency. This proof uses that the Mahlo universe is closed under the
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set formers ⊥ and →. We therefore include constructors for their codes in the definition of the
Mahlo universe. (The full definition should include closure under all standard set formers, but
they are omitted here.)

We first define the empty type ⊥:

data ⊥ : Set where

¬ : Set → Set
¬ X = X → ⊥

The internal Mahlo universe closed under the subuniverse set former U and under ⊥ and→
is defined as follows. Note that we have not included the closure of the subuniverse under the
standard set formers in the code since this plays no role in the proof of Palmgren’s paradox.

data M : Set where
U’ : (f0 : (x0 : M) → (S x0 → M) → M)

(f1 : (x0 : M) → (x1 : S x0 → M) → S (f0 x0 x1) → M)
→ M

⊥’ : M
_→’_ : M → M → M

S : M → Set
S (U’ f0 f1) = U f0 f1
S ⊥’ = ⊥
S (a →’ b) = S a → S b

data U (f0 : (x0 : M) → (S x0 → M) → M)
(f1 : (x0 : M) → (x1 : S x0 → M) → S (f0 x0 x1) → M) : Set where

c0 : (x0 : U f0 f1) → (S (T f0 f1 x0) → U f0 f1)
→ U f0 f1

c1 : (x0 : U f0 f1) → (x1 : (S (T f0 f1 x0) → U f0 f1))
→ S (T f0 f1 (c0 x0 x1))
→ U f0 f1

T : (f0 : (x0 : M) → (S x0 → M) → M)
(f1 : (x0 : M) → (x1 : S x0 → M) → S (f0 x0 x1) → M)
→ U f0 f1 → M

T f0 f1 (c0 x0 x1) = f0 (T f0 f1 x0) (λ x0 → T f0 f1 (x1 x0))
T f0 f1 (c1 x0 x1 t) = f1 (T f0 f1 x0) (λ x0 → T f0 f1 (x1 x0)) t

B Agda implementation of Palmgren’s paradox
We implement a proof in Agda of Palmgren’s paradox [33], that is, the inconsistency of the
Mahlo universe with a natural elimination rule. Our presentation is an adaptation of the
proof of the inconsistency of an elimination rule for the axiomatic Mahlo universe in Explicit
Mathematics in [16]. There we defined a general recursion operator and then a fixed point of
the function that maps a set to its negation. We refer to that article for more explanation.

We use the Agda code for the internal Mahlo universe M in appendix A and add Palmgren’s
elimination rule to it:
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M-elim : {C : M → Set}
→ (du : (f0 : ((x0 : M) → (S x0 → M) → M))

→ (f1 : ((x0 : M) → (x1 : S x0 → M) → S (f0 x0 x1) → M))
→ C (U’ f0 f1))

→ (d⊥ : C ⊥’)
→ (d→ : (x y : M) → C x → C y → C (x →’ y))
→ (x0 : M) → C x0

M-elim du d⊥ d→ (U’ f0 f1) = du f0 f1
M-elim du d⊥ d→ ⊥’ = d⊥
M-elim du d⊥ d→ (a →’ b) = d→ a b (M-elim du d⊥ d→ a)

(M-elim du d⊥ d→ b)

In the version in Explicit Mathematics, where the argument of U simply was a function
f : M→ M, we used the elimination rule to define:

ap : M→ M→ M emb : (M→ M)→ M
ap (U f) x = f x emb f = U f

and obtained ap (emb f) x = f x. In this way, we could simulate the untyped lambda calculus
and define the Y-combinator. Thus, we could define the fixed point of λx.x →′ ⊥′ and thus
derive an inconsistency.

In type theory this is slightly more complicated since the argument of U’ is f : TFam(M)→
TFam(M) or more precisely its components (f0, f1).

So we need to lift functions f : M→ M to f ′ : TFam(M)→ TFam(M).
In order to do this, we define two dummy elements:

• dum will be used to lift x : M to (x, dum) : TFam(M)

• dum’ will be used to lift a function f : M → M to (f0, dum’) : TFam(M) → TFam(M),
where f0 = λu _→ f u.

dum : {x : M} → S x → M
dum a = ⊥’

dum’ : {x : M → M}(x0 : M) (x1 : S x0 → M) → S (x x0) → M
dum’ _ _ _ = ⊥’

We define ap : M such that ap (U’ f g) x = f x dum.

ap : M → M → M
ap = M-elim (λ f0 _ x → f0 x dum)

(λ _ → ⊥’)
(λ _ _ _ _ _ → ⊥’)

We define emb : (M→ M)→ M, s.t. ap (emb f) y = f y:

emb : (M → M) → M
emb f = U’ (λ u _ → f u) dum’

Now we can define the Y-combinator:
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y : (M → M) → M
y k = emb (λ x → k (ap x x))

Y : (M → M) → M
Y k = ap (y k) (y k)

We define negation

l : M → M
l x = x →’ ⊥’

and its fixed point:

a : M
a = Y l

A : Set
A = S a

We have definitionally a = a →’ ⊥’ and therefore A = ¬ A. However, a doesn’t normalise
(because it reduces to a term definitionally equal to a →’ ⊥’ and we therefore get an infinite
reduction sequence). Because of this, Agda doesn’t infer these equalities. Instead, we define

p1 : A → ¬ A
p1 x = x

p2 : ¬ A → A
p2 x = x

and the inconsistency follows:

p3 : ¬ A
p3 x = p1 x x

p4 : A
p4 = p2 p3

inconsistent : ⊥
inconsistent = p3 p4
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