
SABEC: Secure and Adaptive Blockchain-Enabled
Coordination Protocol for Unmanned Aerial

Vehicles(UAVs) Network
1st Hulya Dogan

Department of Computer Science
Swansea University

Swansea, United Kingdom
hulya.dogan@swansea.ac.uk

2nd Anton Setzer
Department of Computer Science

Swansea University
Swansea, United Kingdom

a.g.setzer@swansea.ac.uk

Abstract—The rapid advancement of drone swarm technology
has unlocked a multitude of applications across diverse industrial
sectors, including surveillance, delivery services, disaster manage-
ment, and environmental monitoring. Despite these promising
prospects, ensuring secure and efficient communication and co-
ordination among drones within a swarm remains a significant
challenge. Key obstacles include maintaining efficiency, facilitating
the seamless sharing of sensing data, and achieving robust consen-
sus in the presence of Byzantine drones—malicious or faulty UAVs
capable of disrupting swarm operations and leading to catastrophic
outcomes. To address these challenges, we introduce SABEC (Se-
cure and Adaptive Blockchain-Enabled Coordination Protocol), an
innovative blockchain-based approach designed to manage multi-
drone collaboration during swarm operations. SABEC improves the
security of the consensus achievement process by integrating an
efficient blockchain into the UAV network, coupled with a practical
and dynamic consensus mechanism. The protocol incentivizes
network devices through a scoring system, requiring UAVs to
solve intricate problems employing the Proof of Work (PoW) with
Fuzzy C-Modes clustering algorithm. Leader UAVs are dynamically
selected within clusters based on a predefined threshold, tasked
with transmitting status control information about neighbouring
UAVs to a cloud server. The server consolidates these data through
a robust consensus mechanism, relaying them to the network
coordination tier where decision-making consensus is reached, and
the data are immutably stored on the blockchain. To facilitate
the dynamic and adaptive construction of configurable trusted
networks, SABEC employs a consensus protocol based on the
blockchain-assisted storage. Comparative experiments conducted
using NS3 simulation software demonstrate SABEC’s significant
advantages over traditional routing and consensus protocols in
terms of packet delivery rate, coordination overhead, and average
end-to-end delay. These improvements collectively enhance the
fault tolerance of UAV networks, ensuring high availability and
reliability even in the presence of adversarial nodes. By augment-
ing the security of consensus achievement, SABEC substantially
improves connectivity, security and efficiency within intelligent
systems, thereby elevating the potential and stability of multi-drone
applications in real-world scenarios.

Index Terms—UAVs Network, Byzantine Attack, Swarm drone,
Blockchain, Security, Proof of Work (PoW), Fuzzy C-Modes Clus-
tering Algorithm, Fault Tolerance

I. INTRODUCTION

In the era of 4.0 industry, the widespread integration
of autonomous robotic systems has revolutionized various
sectors, such as healthcare [1], self-driving automobiles[2],
smart manufacturing[3], and agriculture[4]. This paradigm
shift in robotics research has transitioned from developing
and operating sophisticated single-robot systems to exploring
multi-robot or swarm-robot systems. The ability to integrate

simple individual robot actions into collaborative missions
involving multiple robots has enabled the accomplishment
of higher-level tasks through interaction and collaboration
within vast robotic systems. Despite individual robots being
relatively uncomplicated and limited in capability, they can
exhibit sophisticated collective behaviours at the multi-robot
level[5]. Notably, drones have emerged as pivotal aerospace
robots, facilitating diverse real-world applications. The advent
of smart manufacturing and smart cities has underscored the
increasing importance of real-time, efficient, and secure envi-
ronment monitoring systems, which rely on Unmanned Arial
Vehicles (UAVs) for enhanced functionality[6]. UAV enables
collaboration among drones and their access to restricted
airspace, thereby bolstering air traffic management[7], logis-
tics monitoring[8], smart mobility[9], public safety[10], and
environmental applications[11]. Drones have found extensive
utility in numerous domains, including package delivery[12],
environmental monitoring[13], collaborative operations with
other robot types in smart manufacturing[14], traffic monitor-
ing in smart cities[15], and public safety and disaster man-
agement. These applications share a common requirement
of navigation and airspace control[16]. Moreover, large-scale
environmental monitoring necessitates the coordination of a
group of drones due to individual drones’ limited mobility
and capabilities. Consequently, coordinated control strategies
and practical consensus algorithms are indispensable to ensure
UAV systems’ stability, safety, energy efficiency, and trustwor-
thiness. However, the inherent heterogeneity and complex-
ity of UAV systems necessitate the development of efficient
and adaptable network designs to ensure proper function-
ing and safety. Blockchain technology, specifically consensus
algorithms, offers a decentralized and scalable solution for
achieving consensus among multi-drones while enhancing
security and trustworthiness in UAV networks[17][18][19]. Inte-
grating blockchain into multi-drone systems has emerged as a
prominent research area, providing solutions for controlling
Byzantine drones and addressing the consensus problem.
Furthermore, specific aspects of collaboration requiring the
sharing of sensitive data among drones can be secured by
incorporating elements of the blockchain stack, such as the
Merkle Tree technique[20]. Consequently, multi-drone sys-
tems necessitate consensus among drones to enable real-
time, collaborative, and efficient task execution. Subsequent
investigations since 2018 have explored various blockchain



applications in the swarm of UAVs, encompassing consensus
achievement of swarms in the presence of Byzantine drones,
management of collaboration in heterogeneous UAV systems,
and secure data collection. Nonetheless, this study investigates
the utilization of blockchain technology to manage drone col-
laboration in a multi-drone system, emphasizing the sharing
of sensor data capability, which poses a significant challenge
in multi-drone collaboration. Considering that drones exhibit
varying numbers, types, and data analysis rates, it is crucial
to establish an automatic consensus mechanism for drones.
The objectives of applying consensus algorithms in blockchain
systems align with those of swarm design. Firstly, blockchain
functions as a distributed decision-making system that oper-
ates without the need for trust between participating entities,
mirroring the operating conditions of swarms[21]. Secondly,
since blockchain systems incorporate procedures to maintain
information integrity, swarms established through these proce-
dures do not require additional nodes for verifying operational
records[22]. Thirdly, the loss of a single drone, akin to the
loss of an individual node in any decentralized system, should
maintain the consensus-reaching process[23]. Proof of Work
(PoW), a decentralized consensus technique, compels network
participants to invest time in solving arbitrary mathematical
puzzles to prevent malicious influences[24]. In this study, we
implemented a new practical and dynamic protocol using
PoW consensus to generate the difficulty factor in the UAV
network and the dynamic clustering selection frequency. This
approach provides drones with enhanced accuracy, usability
and mitigates the risk of malicious attackers/ Byzantine drones
sharing tampered data. UAV networks possess qualities such as
affordability, easy and flexible deployment, and high resistance
to destruction, making them extensively utilized in numerous
fields[25]. In recent years, the domestic consumer-grade UAV
market has reached saturation, leading to the prominence of
industrial-grade UAVs in the emerging industry. Collaborating
with traditional sectors, UAV networks have become indis-
pensable aerial platforms, playing irreplaceable and crucial
roles in various specialized environments, including security
monitoring, emergency disaster mitigation, rescue operations,
exploration, and digital cities[26]. Despite progress in swarm
drone technology, drones remain vulnerable to jamming,
trapping[27], and attacks[28] due to their limited resources,
the open nature of wireless communications, and the need
for more aerial countermeasures[29]. Mission-oriented UAV
networks operate in highly dynamic, complex, and unstruc-
tured environments where network size, topology, and node
trustworthiness constantly change. Enhancing network fault
tolerance and maintaining trustworthiness during missions
pose significant challenges for distributed UAV networks, given
their limited resources and lack of central support[30]. UAV
networks operating in mission-oriented environments face
three significant unfavourable conditions: non-security, com-
plex operation environments, lack of central support, and
limited resources of network nodes. Thus, enhancing fault
tolerance and maintaining trustworthiness during missions
pose major challenges for distributed UAV networks with
limited resources and no central support. Mission-oriented
UAV networks operate in highly dynamic, complex, and un-
structured environments where network size, topology, and
trustworthiness of network nodes continuously change. Con-

sequently, unauthorized access by external nodes must be
prevented along with tolerating internal error nodes that may
emerge within UAV nodes due to consumption, damage, or
compromise.

Figure 1: Network Architecture of the System

II. CONTRIBUTIONS

This paper introduces the Secure and Adaptive Blockchain-
Enabled Coordination (SABEC) protocol, which addresses the
dynamic nature of UAV networks by leveraging blockchain
technology combined with the Proof-of-Work (PoW) mech-
anism [31] and Fuzzy C-Means Clustering (FCM) algorithm
[32]. SABEC ensures secure network participation and leader
election through rigorous verification processes, enhancing
protection against Byzantine drones and other security threats.
Leader drones, validated through PoW, are responsible for
securely transmitting data to a base station server, which
aggregates and evaluates data, storing results on a blockchain
for integrity and reliability. The adaptive consensus mechanism
introduced by SABEC efficiently handles network topology
changes and node reliability by recording health assessments
and facilitating automatic reconfiguration of the network. The
clustering algorithm within SABEC periodically selects cluster
heads based on trust metrics, forming an upper-layer network
to manage operations. This dynamic clustering approach opti-
mizes resource usage, enhances fault tolerance, and supports
efficient collaboration among UAVs. SABEC provides an in-
novative solution for secure UAVs network, adaptive leader
election, efficient consensus, and reliable data storage, sig-
nificantly advancing UAV network coordination by improving
trust, scalability, and resilience.

III. NETWORK ARCHITECTURE

The network architecture of the Secure and Adaptive
Blockchain-Enabled Coordination Protocol (SABEC) is pre-
sented, an innovative cross-layer protocol designed to optimize
UAV network performance through adaptive trust manage-
ment and blockchain technology. SABEC addresses critical
challenges such as excessive coordination overhead, dynamic
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Figure 2: Blockchain-Enhanced for Swarms of drone network Architecture

node density, and Byzantine faults, thereby ensuring high net-
work availability and trustworthiness. By leveraging advanced
blockchain technology and innovative consensus algorithms,
SABEC provides a scalable and secure framework adaptable
to the dynamic and resource-constrained environments in
which UAV networks operate. The architecture of SABEC is
meticulously designed to operate across multiple network tiers,
facilitating seamless information exchange and task collabo-
ration among UAV nodes. The protocol integrates blockchain
technology to enhance security and trust management, ensur-
ing that only reliable nodes participate in the network’s upper
management layer. The architecture is compartmentalized into
distinct tiers, each responsible for specific functionalities es-
sential to the framework’s performance and reliability.
Signal Transmission and Access Coordination Tiers: At the
foundational signal transmission tier, the Proximal Node Dis-
covery and Monitoring Component protocol (PDMC) is re-
sponsible for the accurate detection and continuous mon-
itoring of adjacent UAV nodes. PDMC employs enhanced
signal processing techniques to identify neighbouring nodes
reliably, even in environments with high interference and node
mobility. This component protocol establishes a dependable
foundation for subsequent routing decisions by maintaining
up-to-date neighbour tables and monitoring the forwarding
behaviours of adjacent nodes.
Data Coordination Tiers: The data coordination tier integrates
three pivotal component protocols that collectively manage
local network and cross-network communications: Localized
Trust Coordination Component protocol (LTCC): This compo-
nent protocol manages local zone communications by evaluat-
ing and prioritizing coordination paths through trusted nodes
based on real-time assessments. LTCC minimizes internal zone
coordination overhead by selecting optimal paths that reduce
latency and enhance data delivery efficiency. Hierarchical
Trust-Based Coordination Component protocol (HTCC): Fa-

cilitating external communications, HTCC establishes hier-
archical coordination paths that connect different network
zones through trusted gateway nodes. HTCC employs dy-
namic clustering algorithms to form and manage hierarchical
structures, thereby enhancing scalability and reducing coor-
dination complexity. Secure Border Coordination Component
protocol (SBCC): Overseeing data transmission across network
boundaries, SBCC ensures secure and efficient coordination
between zones. SBCC integrates blockchain-based verification
mechanisms to authenticate coordination information and
prevent the dissemination of malicious data.
Service Management and Control Tiers: At the pinnacle of the
architecture, the service management tier incorporates the Se-
cure and Adaptive Blockchain-Enabled Coordination Protocol
(SABEC). SABEC serves as the core component for managing
trust and coordination within the network. It maintains an
immutable ledger of node trustworthiness and network config-
urations, enabling real-time network reconfiguration based on
trust assessments and operational requirements. The control
coordination tier ensures that data transmitted across the net-
work adheres to predefined security protocols and operational
guidelines, further fortifying the network’s integrity. SABEC
utilizes a Two-Tier Consensus mechanism (TTC) to ensure
efficient and secure network reconfiguration: Trust Evaluation
Tier (Data Consensus Stage): In this initial tier, nodes perform
real-time monitoring of proximal nodes’ behaviours using the
LTCC and HTCC component protocols. Nodes generate TATs
based on observed behaviours, which are then broadcasted to
authorized nodes within the upper management network. This
tier employs a Lightweight Byzantine Fault Tolerance (LBFT)
algorithm to achieve rapid consensus on trust assessments
with minimal computational overhead. Network Coordination
Tier (Decision Consensus Stage): The second tier involves the
aggregation and validation of TATs through the blockchain’s
smart contracts. Authorized nodes execute smart contracts to
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finalize consensus on trust scores and determine necessary
network reconfigurations. This tier ensures that only trusted
nodes are involved in critical network operations, thereby
maintaining the integrity and reliability of the UAV network.

Figure 3: Simulation of the Proposed System

IV. SIMULATION OF THE PROPOSED SYSTEM

To rigorously evaluate the performance and robustness
of SABEC, comprehensive simulations were conducted using
the NS-3 Network Simulator, a widely recognized tool for
modelling and analysing network protocols. The simulation
parameters shown in Figure 5. To emulate realistic operational
conditions, Windows 11 Home 64-bit 13th Gen Intel Core
i7-13650Hx 2.6GHz 32GB RAM were used in the simulation.
During the simulation, the behaviour of each node of the
network is calculated independently to match the realistic
network operation, providing detailed and various statisti-
cal data analysis functions. The simulation environment was
meticulously designed to replicate real-world UAV mission
scenarios, incorporating a range of operational parameters to
assess protocol performance under diverse conditions.

Figure 4: Results of the Simulation

Furthermore, the proposed protocol was tested on mission
scenarios and the number of UAV nodes was selected as 1000

Figure 5: Simulation Parameters in NS-3

in the simulation experiment. Each testing protocol was run
with one hundred scenarios with different random numbers,
and the average of all runs was used as the basis for eval-
uation. The results are shown in the graph in Figure 4. The
data obtained shows that Byzantine devices do not affect the
proposed system, and the packet transmission speed is quite
successful compared to other studies. Various mission sce-
narios were simulated by incrementally introducing byzantine
nodes (ranging from 0 to 35) to evaluate SABEC’s resilience
against compromised, selfish, and failure-prone nodes. Each
scenario was executed thrice with different random node
trajectories to ensure statistical validity, and the average results
were employed for comprehensive analysis. Malicious nodes
exhibited behaviours such as packet dropping, data tampering,
and false coordination information dissemination to simulate
realistic attack vectors.

SABEC Protocol Implementation:

Let X = {x1, x2, . . . , xn} represent the set of UAV nodes in
the network, where each xi contains trust metrics: Message
forwarding accuracy (f), Energy consumption (e), and Protocol
adherence (p). The FCM algorithm minimizes the objective
function:

J (U,V) =
n∑

i=1

c∑
j=1

(µi j )m∥xi −v j ∥2

where U = [µi j ] is the fuzzy membership matrix, V =
{v1,v2, . . . ,vk } represents cluster centers, m > 1 is the fuzziness
coefficient, ∥xi −v j ∥ is the Euclidean distance between node
xi and cluster center v j . The objective function J (U,V) is the
standard formulation used in the FCM algorithm. It aims to
minimize the weighted sum of squared distances between data
points and cluster centers, where the weights are the fuzzy
membership degrees raised to the power of m.
Trust Metric Calculation: For each UAV node, trust metrics
are computed as:

T (xi ) = w1 f +w2e +w3p

where w1, w2, w3 are weight coefficients, 0 ≤ f ,e, p ≤ 1,
∑

wi =
1. The trust value T (xi ) is computed as a weighted sum of
normalized trust metrics, which is a common approach in trust
assessment models. Ensuring that

∑
wi = 1 allows the trust

value to remain within a consistent scale. Algorithm steps as
follows. Step 1: Initialize membership matrix U(0) randomly.

FOR each iteration t :
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1) Step 2: Calculate cluster centres:

v j =
∑n

i=1(µi j )m xi∑n
i=1(µi j )m

2) Step 3: Update membership values:

µi j = 1∑c
k=1

( ∥xi−v j ∥
∥xi−vk∥

)2/(m−1)

3) Step 4: Check convergence:

IF ∥U(t ) −U(t−1)∥ < ϵ THEN stop. END FOR

Trust-based Cluster Formation algorithm categorizes nodes
into c clusters (c = 3):

• High-trust cluster (CH): µi j ≥ 0.7
• Medium-trust cluster (CM): 0.3 <µi j < 0.7
• Low-trust cluster (CL): µi j ≤ 0.3

The trust threshold (τ) is dynamically adjusted:

τ(t ) = τ0 +α
∑

(∆T /∆t )

where τ0 is the initial threshold, α is the adjustment coeffi-
cient, ∆T /∆t represents the trust value change rate.

The effectiveness of FCM clustering is evaluated using Sil-
houette Score defined as (b − a)/max(a,b), where a is the
mean intra-cluster distance and b is the mean nearest-cluster
distance. The algorithm incorporates Byzantine fault tolerance
by defining the Trust Threshold as mean(TV) + α * std(TV)
where α is the security parameter (ranging from 1.5 to 2.0),
and std represents the standard deviation. Setting the thresh-
old based on the mean and standard deviation allows the
protocol to dynamically adjust to the distribution of trust
values, enhancing resilience against Byzantine faults. The time
complexity is O(N ∗C ∗I ∗D) where N is the number of nodes,
C is the number of clusters, I is the number of iterations,
and D is the dimension of the feature vector. The parame-
ters and algorithms presented are correct and appropriately
formulated for the implementation of the FCM algorithm
within the SABEC protocol. They accurately reflect standard
methodologies in fuzzy clustering and trust management, and
their integration into the SABEC framework is logically sound.
The detailed steps and formulas provide a robust foundation
for dynamic trust assessment, efficient cluster formation, and
resilience against Byzantine attacks in UAV networks. The
fundamental membership verification is based on a fuzzy logic
approach combined with blockchain-based validation. The
primary membership vector MV (i ) represents the degree of
belonging for each drone i to available clusters, expressed as:
MV (i ) = [µi 1,µi 2, . . . ,µi c ] where µi j is the membership degree
of drone i to cluster j , c is the number of clusters. This vector
incorporates multiple parameters including drone positioning,
trust metrics, and performance indicators.

The protocol employs a trust-weighted membership strength
calculation, MS(i , j ) =µi j ∗w(T i j ) where w(T i j ) is the trust-
weighted coefficient, T i j represents the trust value of drone
i in cluster j . This formulation ensures that membership
assignment is influenced by both fuzzy clustering results and
established trust metrics.

The algorithm for Cluster Membership Validation is as
follows: Input: Drone Di , Cluster Set C . Output: Validated
Cluster Assignment and Proof. First, calculate the feature

vector F (i ) = [Position(i ),Energy(Ũ ),Trust(i ),Performance(i )].
Next, compute the distance metrics for each cluster C j in C ,
where D(i , j ) = ∥F (i )−Centroid( j )∥. Then, calculate the degrees
of membership for each group C j in C using:

µi j = 1∑c
k=1(D(i , j )/D(i ,k))2/(m−1)

Finally, validate the proof. If AC (i ) ≥ threshold_membership
and V ali d ateSi g natur e(Pr oo f (i )) and
V er i f yConsensus(Pr oo f (i )) all hold true, then return
VALID. Otherwise, return INVALID.

Leader Selection Metrics:

The primary selection metric is calculated using a weighted
composite score: SS(i) = a1 * MS(i,j) + a2 * TR(i) + a3 *
PS(i) where SS(i ) is the selection score for drone i , MS(i , j )
is the membership strength in cluster j , T R(i ) is the trust
rating, PS(i ) is the performance score, and a1, a2, a3 are weight
coefficients where

∑
a = 1. The membership strength (MS) is

defined as:
MS(i , j ) =µi j ∗w(T i j )

where µi j is the fuzzy membership degree, w(T i j ) is the trust-
weighted coefficient, and T i j is the historical trust value. The
characteristics features are reflecting drone’s belonging degree
to specific clusters, incorporating historical performance and
accounting for spatial distribution. The trust rating calculation
(T R) is defined as:

T R(i ) = (
n∑

k=1
T V (k, i ))/n ∗β

where the components are T V (k, i ) representing the trust value
from drone k to drone i , n is the number of evaluating
drones, and β is the trust decay factor (0 < β ≤ 1). Peer
evaluation impact, temporal relevance, and network consensus
are considered. The performance score (PS) is defined as:

PS(i ) = w1∗EC (i )+w2∗CC (i )+w3∗N S(i )

where EC (i ) is the energy capacity, CC (i ) is the communica-
tion capability, N S(i ) is network stability, and w1, w2, w3 are
weight factors. The weight adaptation formula is

anew = acur r ent +η∗ AP

where η is the learning rate, and AP represents performance
change. The threshold adjustment is given by

thr eshol d(t +1) = thr eshol d(t )∗ (1+λ∗∆E)

where λ is the adjustment coefficient and ∆E is the environ-
mental change factor.

When the cluster head selection, the cluster head score
(C H_scor e) is calculated as:

C H_scor e(i ) = SS(i )∗ (Ecur r ent /Emax )∗ (1/Daver ag e )

where Ecur r ent is the current energy level, Emax is the maxi-
mum energy capacity, and Daver ag e is the average distance to
cluster members. The role assignment formula is

Role_ f i tness(i ) = SS(i )∗C F (i )∗ AF (i )

where C F (i ) is the capability factor and AF (i ) is the availability
factor.
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Proof of Work (PoW) and Leader Election

At the core of SABEC’s security mechanisms is the integra-
tion of the PoW mechanism with leader election. PoW serves
as a fundamental principle for defending the network and
incentivizing legitimate participation. Each node capable of
solving a valid PoW receives recognition as the legitimate
leader. The PoW mechanism uses a cryptographic puzzle,
which provides fairness in terms of computational effort and
fosters scalability among autonomous nodes, deterring collu-
sion. This combined approach improves resilience against Sybil
attacks, ensures decentralized governance, and provides more
scalability in consensus leadership roles, ultimately contribut-
ing to improved security and critical network performance.

The Difficulty Factor D is dynamically adjusted to regulate
computational effort required by each UAV. It is recalculated in
response to network changes to ensure fairness and maintain
appropriate security provisioning. The expression for D is:

D = Dmax ×
(

Ttarget

Tcurrent

)
where Ttarget is the target time for discovering a hash value

that meets the condition. This inclusion of a target time
ensures the unpredictability of PoW solutions. Nodes solve the
difficulty puzzle, and the UAV broadcasts the result along with
its unique identification to all nearby nodes. Each UAV verifies
the solution by hashing its assigned identifier, I Di , the current
timestamp ti , and a generated nonce Ni , as G = H(I Di ||ti ||Ni ).
Difficulty verification requires that G <Cthreshold, which is the
network difficulty component:

Cthreshold =Cmax ×Tcurrent

This condition ensures that only UAVs investing significant
computational effort can find a valid solution. Upon finding
a valid nonce Ni , the UAV broadcasts its solution, including
I Di , ti , and Ni , to neighboring nodes. Neighboring UAVs
independently verify the solution by recomputing Cthreshold and
checking the difficulty condition. This step prevents fraudulent
claims of PoW resolutions. The solution is valid, and the UAV
proceeds to the next operation of leader election. The criteria
to rank and elect the leader involves the highest score in a pre-
existing metric calculated as the total assessment, historical
performance, operational validity, and peer evaluation:

Ri = a1 ∗Ti +a2 ∗Pi +a3 ∗Ci +a4 ∗Hi

where Ti is trust score of UAV node i , Pi is performance
score, Ci is communication capability, and Hi is historical
accuracy. Every authenticated UAV node with a verified com-
putational difficulty solution is included in the leadership
process, and a unique identifier set {I Di , ti , Ni } is broadcast
to verify identity and ensure consistency.

SECURITY ANALYSIS OF SABEC

The robustness of the Secure and Adaptive Blockchain-
Enabled Coordination (SABEC) protocol against specific at-
tacks is paramount for ensuring the reliability and security of
UAV networks. By conducting a comprehensive security anal-
ysis, we can elucidate how SABEC addresses potential threats
such as Sybil attacks, collusion, replay attacks, and Byzantine
faults. This analysis highlights the protocol’s resilience and the
mechanisms by which it safeguards the network’s integrity.

One of the critical threats in UAV networks is the Sybil
attack, where a malicious entity generates multiple fake iden-
tities to gain disproportionate influence over the network.
SABEC mitigates this risk through a multifaceted approach
that combines unique identity verification, blockchain-based
identity management, and trust evaluation adjustments. The
trust evaluation process incorporates identity verification by
assigning lower trust scores to nodes with no or limited
history—a common characteristic of newly created Sybil iden-
tities. The trust rating for a node i is adjusted using a new
identity factor γi , where γi = 0.5 for new nodes and γi = 1 for
established nodes. The trust rating is then calculated as:

T Ri =
(∑n

k=1 T V (k, i )

n

)
×β×γi

where T V (k, i ) is the trust value from node k to node i , n
is the number of evaluating nodes, and β is the trust decay
factor.

In addressing collusion attacks, where multiple malicious
nodes collaborate to manipulate trust assessments or dis-
rupt network operations, SABEC employs distributed trust
assessment, adaptive weighting mechanisms, and selective
consensus participation. Trust evaluations are aggregated from
multiple independent nodes, reducing the influence of any
colluding group. Each node k assesses node i and computes
T V (k, i ). The global trust score T R(i ) is calculated as:

T Ri =
(∑n

k=1 T V (k, i )

n

)
×β

An anomaly detection mechanism computes the variance σ2
i of

the trust values for node i . If σ2
i exceeds a threshold θcollusion,

collusion is suspected, and appropriate measures are taken.
Adaptive weighting further diminishes the impact of colluding
nodes by weighting trust scores based on the trustworthiness
of the evaluating nodes. The weighted trust aggregation is:

T Ri =
(∑n

k=1ωk ×T V (k, i )∑n
k=1ωk

)
×β

where ωk = T Rk is the trust rating of node k. Nodes with
lower trust ratings have less influence on the global trust
score, making it difficult for malicious nodes to skew trust
evaluations. Moreover, only nodes exceeding a trust threshold
τconsensus participate in the consensus process, limiting the
ability of malicious nodes to influence critical network deci-
sions. The trust threshold is dynamically set as:

τconsensus = mean(T R)+α∗ std(T R)

where α is a security parameter, and std(T R) is the standard
deviation of trust ratings.

To counter replay attacks, where valid messages are mali-
ciously retransmitted to deceive the network, SABEC includes
timestamps ti and nonces Ni in messages to ensure freshness.
The message structure is:

Mi = {Data, ti , Ni ,Signature}

Recipients verify that the timestamp is within an acceptable
window and that the nonce has not been previously used,
preventing attackers from replaying old messages.

Addressing Byzantine faults, where nodes behave arbitrarily
or maliciously, SABEC implements a lightweight Byzantine
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Fault Tolerance (LBFT) consensus algorithm. This algorithm
ensures that the network can reach consensus even when a
fraction of nodes is faulty or malicious. The LBFT algorithm
tolerates up to f faulty nodes in a network of n nodes, provided
that n ≥ 3 f + 1. The consensus process involves pre-prepare,
prepare, and commit phases, where nodes validate proposals,
broadcast verifications, and agree on decisions after receiving
sufficient confirmations.

Dynamic leader election, based on trust scores and rotated
periodically, prevents any single node from exploiting a lead-
ership position. Key parameters within SABEC play a vital role
in the protocol’s security. The security parameter α affects
the sensitivity to trust deviations in threshold calculations,
impacting the detection of anomalies and potential attacks.
The trust decay factor β controls the influence of past trust
evaluations, ensuring that recent behaviors are weighted ap-
propriately in trust assessments. The new identity factor γi

reduces the trust influence of new nodes, mitigating the impact
of Sybil attacks by preventing newly introduced identities from
gaining immediate significant influence. The variance thresh-
old θcollusion aids in detecting potential collusion by identifying
inconsistencies in trust evaluations. The adjustment coefficient
λ allows for dynamic adaptation of thresholds in response to
environmental changes, ensuring that the protocol remains
effective under varying network conditions. The Secure and
Adaptive Blockchain-Enabled Coordination (SABEC) protocol
represents a significant advancement in securing Unmanned
Aerial Vehicle (UAV) networks. It enhances the integrity and
operational resilience through the use of Proof of Work
(PoW) mechanisms, lightweight hierarchical leader election,
and adaptive security policies specifically designed to protect
nodes against critical threats. The detailed security threats,
such as Sybil attacks, DoS attacks, and Byzantine faults, in
the following sections shed light on the intricacies of the
SABEC framework. The protocol provides significant measures
of security and reliability.

V. PERFORMANCE ANALYSIS

The comparative analysis underscores SABEC’s superiority
in maintaining high performance and reliability under ad-
verse conditions. While traditional protocols like AODV[33],
OLSR[34], and ZRP[35] exhibit satisfactory performance in
benign environments, their capabilities deteriorate rapidly in
the presence of malicious nodes. SABEC exhibits superior
fault tolerance by dynamically isolating malicious nodes and
reconfiguring the network topology. This proactive approach
prevents faulty or malicious nodes from disrupting network
operations, ensuring continuous and reliable data transmis-
sion. Traditional protocols lack such dynamic isolation mech-
anisms, making them vulnerable to network destabilization
under high adversarial conditions. SABEC optimizes resource
utilization through its hierarchical network structure and ef-
ficient consensus mechanisms. By minimizing redundant co-
ordination paths and reducing coordination overhead, SABEC
ensures that limited UAV resources are allocated effectively,
enhancing overall network performance and longevity. In con-
trast, traditional protocols often suffer from excessive routing
overhead and inefficient resource allocation, particularly as
network size increases. Traditional protocols generally lack
integrated security features, rendering them susceptible to

various attacks. SABEC’s integration of blockchain technology
provides robust security enhancements, including immutable
trust records and secure consensus operations. This integra-
tion effectively mitigates threats such as black hole attacks,
gray hole attacks, node impersonation, and collusion, thereby
preserving the integrity and reliability of the UAV network.

Figure 6: Packet Delivery Rate vs. Number of Malicious Nodes

The results, depicted in Figure 6, illustrates the Packet
Delivery Rate (PDR) across different protocols as the number
of malicious nodes increases. Initially, AODV [33] demonstrates
the highest PDR in the absence of malicious nodes, closely
followed by ZRP[35] and SABEC. However, as malicious nodes
are introduced, the PDR of AODV, OLSR, and ZRP declines
sharply due to their inability to effectively isolate compromised
nodes. In contrast, SABEC maintains a high PDR even with an
increasing number of malicious nodes, thanks to its dynamic
trust blockchain-based consensus mechanisms.

Figure 7: Coordination Overhead vs. Number of Malicious
Nodes

Figure 7 presents the coordination overhead across different
protocols under varying numbers of byzantine nodes. Classi-
cal protocols like OLSR and AODV exhibit low coordination
overhead in benign conditions; however, their overhead surges
dramatically as malicious nodes are introduced, primarily due
to the proliferation of invalid routing information and contin-
uous route maintenance. Conversely, SABEC demonstrates a
consistently low and decreasing coordination overhead. This
efficiency is achieved through the isolation of untrustworthy
nodes and the reliance on a trusted upper management net-
work, which minimizes redundant coordination information
and optimizes resource utilization.
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Figure 8: End-to-End Delay vs. Number of Malicious Nodes

The End-to-End Delay (E2E Delay), depicted in Figure 8,
is a crucial metric for time-sensitive UAV operations. In envi-
ronments without malicious nodes, ZRP achieves the lowest
latency, followed by OLSR and AODV. However, the intro-
duction of malicious nodes leads to a rapid increase in E2E
Delay for these classical protocols, ultimately causing network
instability beyond 30 malicious nodes. SABEC, leveraging its
trusted coordination mechanisms and hierarchical network
structure, maintains low E2E Delay even under high adversarial
conditions, ensuring timely data delivery essential for mission-
critical UAV applications.

Figure 9: Blockchain Storage Growth Comparison

Storage and energy efficiency are critical for UAV net-
works, which operate under stringent resource constraints.
SABEC addresses these challenges through its two-tier con-
sensus mechanism and efficient blockchain integration. Figure
9 demonstrates that SABEC significantly reduces blockchain
storage growth by retaining only essential consensus results
and aggregated trust scores. This approach contrasts sharply
with traditional blockchains, which require continuous storage
of all transaction data, leading to rapid ledger expansion.

Energy consumption analysis, presented in Figure 10, reveals
that SABEC outperforms traditional blockchain consensus al-
gorithms such as Proof-of-Work (PoW), Proof-of-Stake (PoS),
and Practical Byzantine Fault Tolerance (PBFT). By mini-
mizing computational and communication overhead through
trusted coordination and periodic network reconfiguration,
SABEC ensures sustainable energy usage, thereby extending
the operational lifespan of UAV nodes. Traditional consensus
mechanisms, particularly PoW, incur high energy costs due

Figure 10: Energy consumption vs. Number of Nodes

to their computationally intensive nature, making them less
suitable for resource-constrained UAV environments.

The comparative performance evaluation of SABEC against
Enhanced AODV [33], Adaptive OLSR [34], and Secure ZRP
[35] highlights its superior resilience, scalability, security, and
efficiency under adverse conditions. SABEC’s blockchain-based
trust mechanisms not only enhance its ability to maintain
a high Packet Delivery Rate but also reduce coordination
overhead, ensure low End-to-End Delay, and provide scala-
bility, security, and energy efficiency even under challenging
conditions. These advantages position SABEC as a highly
suitable protocol for UAV networks where security, efficiency,
and responsiveness are paramount.

VI. CONCLUSIONS

The implementation and evaluation of the Secure and
Adaptive Blockchain-Enabled Coordination Protocol (SABEC)
demonstrate its efficacy in enhancing the performance, scala-
bility, and security of UAV networks. By integrating blockchain
technology with advanced coordination protocols, SABEC ef-
fectively mitigates coordination overhead, ensures high packet
delivery rates, maintains low end-to-end delays, and optimizes
energy consumption. The framework’s ability to dynamically
reconfigure the network in response to changing node states
and malicious activities further underscores its suitability for
mission-critical UAV applications. Simulation results validate
SABEC’s superior performance compared to traditional coor-
dination protocols, highlighting its resilience and efficiency in
complex operational environments. The adoption of a two-
tier consensus mechanism and hierarchical network structure
ensures that SABEC can scale effectively while maintaining
robust security and trust management. Future work may
explore the integration of machine learning algorithms for
predictive trust assessments, further optimization of the con-
sensus mechanism for enhanced energy efficiency, and real-
world deployment of SABEC in diverse UAV mission scenarios
to validate its performance in practical applications.
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