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Chapter 0

Introduction

These lecture notes contain the later parts of my lecture “Constructive
Mathematics and λ-calculus”, held in autumn 1998 at the Department of
Mathematics, Uppsala University. The parts on HAω and real numbers in
constructive mathematics are very much based on [TD88a] and [TD88b]
and the parts about the λ-calculus are based on [HS86]. Numbers in
brackets refer to the books, respectively.
In the first part the following parts of [TD88a] were treated (the numbers
in brackets refer to that book):

• 1. Introduction (1)

– 1.1. Examples of non-constructive proofs (1.2.)

– 1.2. Directions in the foundations of mathematics (1.1, 1.4)

– 1.3. The Brouwer-Heyting-Kolmogorov (BHK) interpretation of the
logical connectives (1.3.1)

– 1.4. Brouwerian counter examples (1.3.2 - 1.3.7)

• 2. Predicate logic and constructivism (2)

– 2.1. Natural deduction and intuitionistic logic (2.1, 2.3.2)

– 2.2. Logic with existence predicate (2.2.1. - 2.2.4)

– 2.3. The double negation translation (2.3.1. - 2.3.8)

– 2.4. Kripke Semantics (2.5.1 - 2.5.9, 2.5.11, 2.5.13)

– 2.5. Soundness and completeness for Kripke Semantics (2.6.)

• 3. Arithmetic (3)

– 3.1. Primitive recursive arithmetic (PRA) (3.2.)

– 3.2. Heyting Arithmetic (HA) (3.3.)

– 3.3. Friedman’s A-translation (3.5.1 - 4)
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6 CHAPTER 0. INTRODUCTION

– 3.4. Disjunction property and explicit definability for numbers in HA
(3.5.6 - 3.5.12, 3.5.14 - 3.5.17)

– 3.5. Kleene-realizability (4.4)

The notes are currently not very well checked, they are still on the way
to be written. Therefore I welcome comments very much.



Chapter 1

HA
ω and constructive reals

([TD88a, TD88b])

1.1 HA
ω (9.1.1 - 9.1.14)

Definition 1.1.1 (a) Let G be a non-empty set. The elements of G are called
ground types.

The set of (finite) types TG w.r.t. G is inductively defined by

• o ∈ G⇒o ∈ TG .

• σ, τ ∈ TG⇒(σ × τ), (σ→τ) ∈ TG .

The elements of TG are called types. Let in the following G be fixed and
let σ, τ, ρ possibly with accents or subscripts denote elements of TG , o be
elements of TG .

We will omit brackets:

• σ→τ→ρ := σ→(τ→ρ).
• σ × τ × ρ := σ × (τ × ρ).

(b) A language L w.r.t. TG consists of a set of function symbols fσ for every
type σ, and a set of relation symbols Rσ1,... ,σn for every finite sequence of
types σ1, . . . , σn.

In the following fσ, gσ , hσ, function symbols of type σ, Rσ1,... ,σn , relation
symbols of type σ, both possibly with accents or subscripts.

We will only mention the types of a (function-, relation- ) symbol (or
variable or later term) the first time it occurs, writing f instead of fσ, x
instead of xσ etc.

(c) The set of terms of the language L is given by:

7



8 CHAPTER 1. HAω AND CONSTRUCTIVE REALS

• xσ is a term of type σ, where we have infinitely many variables,
denoted by xσ , yσ, zσ, possibly with superscripts for every type σ,
and omit after the occurrence the superscript σ.

• fσ is a term of type σ.

• If sσ→τ , tσ are terms of type σ→τ , σ, (s t) is a term of type τ .

• If sσ , tτ are terms of types σ, τ , then 〈s, t〉 is a term of type σ × τ .
• If sσ×τ is a term of type σ × τ , then s 0 is a term of type σ and s 1

is a term of type τ .

In the following rσ , sσ , tσ denote terms of type σ, (as before with sub-
scripts, accents and we will omit the superscript σ after the first occur-
rence).

s1 · · · sn := (· · · (s1 s2) · · · sn).

(d) The set of prime formulas for a language L as before is given by:

• ⊥ is a prime formula.

• sσ =σ t
σ is a prime formula.

• Rσ1,... ,σn(sσ1 , . . . , sσn) is a prime formula.

(e) The set of formulas L is given by:

• If A is a prime formula, then A is a formula.

• If A,B are formulas, xσ is a variable, then (A∧B), (A∨B), (A→B),
(∀xσ .A), (∃xσ .A) are formulas.

(f) Substitution, substitutability, free variables etc. are defined as usual.

Definition 1.1.2 (a) A domain for the finite types TG is a tuple

〈(Mσ)σ∈TG , (=σ)σ∈TG , (Apσ,ρ)σ,ρ∈TG , (πσ,ρ)σ,ρ∈TG , (pr0,σ,ρ)σ,ρ∈TG , (pr1,σ,ρ)σ,ρ∈TG 〉

such that

• Mσ is a set,

• Mo 6= ∅ for some o ∈ G,
• =σ is an equivalence relation on Mσ written usually infix,

• Apσ,ρ ∈ (Mσ→ρ ×Mσ)→Mρ,

• πσ,ρ ∈ (Mσ ×Mρ)→Mσ×ρ,

• pr0,σ,ρ ∈Mσ×ρ→Mσ,

• pr1,σ,ρ ∈Mσ×ρ→Mρ,

• ∀a ∈Mσ.∀b ∈Mρ(pr0,σ,ρ(πσ,ρ(a, b)) =σ a ∧ pr1,σ,ρ(πσ,ρ(a, b)) =ρ b),

• ∀a ∈Mσ×ρ.a =σ×ρ πσ,ρ(pr0,σ,ρ(a), pr1,σ,ρ(a)).
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and Apσ,ρ, πσ,ρ, pr0,σ,ρ, pr1,σ,ρ respect equality, i.e.

• ∀a, b ∈Mσ,ρ.∀c, d ∈Mσ(a =σ→ρ b∧c =σ d)⇒Apσ,ρ(a, c) =ρ Apσ,ρ(b, d),

• similarly for the πσ,ρ, pr0,σ,ρ, pr1,σ,ρ.

(b) If not mentioned differently, a domain A for TG will be of the form

A = 〈(Aσ)σ∈TG , (=σ)σ∈TG , (Apσ,ρ)σ,ρ∈TG , (πσ,ρ)σ,ρ∈TG , (pr0,σ,ρ)σ,ρ∈TG , (pr1,σ,ρ)σ,ρ∈TG 〉

(c) A finite type structureM for the language L w.r.t. TG consists of

• a domain M for TG ,

• for each function symbol fσ of L an element fM ∈Mσ;

• for each relation symbol Rσ1,... ,σn a relation RM on Mσ1×· · ·×Mσ1 .

s. t.

∀aσ1
1 , . . . , aσn

n , bσ1
1 , . . . , bσn

n . (a1 =σ1 b1 ∧ · · · ∧ an =σn
bn)⇒

(Rσ1,... ,σn,M(a1, . . . , an)⇔Rσ1,... ,σn,M(b1, . . . , bn)) .

(d) An assignment w.r.t. a finite type structure M as above is a function ξ
mapping variables xσ to elements of Mσ.

(e) A model of finite type structure LG and language L is pair 〈M, ξ〉 where
M is a finite type structure for L and ξ is an assignment for it.

(f) If 〈M, ξ〉 is a model for TG , we define the interpretation tσM[ξ] of terms
tσ under it, which will be an element of Mσ:

• xM[ξ] := ξ(x).

• fM[ξ] := fM.

• (sσ→τ tσ)M[ξ] := Apσ,τ (sM[ξ], tM[ξ]).

• (〈sσ , tτ 〉)M[ξ] := πσ,τ (sM[ξ], tM[ξ]).

• (sσ×τ 0)M[ξ] := pr0,σ,τ (sM[ξ]).

• (sσ×τ 1)M[ξ] := pr1,σ,τ (sM[ξ]).

(g) For formulas A of L we define whetherM |= A[ξ], where 〈M, ξ〉 is a model
of L as follows

• M |= ⊥[ξ] :⇔⊥.

• M |= sσ =σ t
σ [ξ] :⇔sM[ξ] =σ t

M[ξ].

• M |= Rσ1,... ,σns1 · · · sn[ξ] :⇔RM(sσ1
1 [ξ], . . . , sσn

n [ξ]).

• M |= A ∧ B[ξ] :⇔M |= A[ξ] ∧M |= B[ξ],
similar for ∨,→, ∀, ∃.
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(h) M |= A, |= A etc. is defined as usual. Note that validity will be preserved
under logical and equality rules.

Definition 1.1.3 (a) The language of HAω is the language for the set of finite
types Tnat with constants

• 0nat,

• Snat→nat,

• k
σ→(τ→σ)
σ,τ ,

• s
(σ→τ→ρ)→(σ→τ)→(σ→ρ)
σ,ρ,τ ,

• p
σ→ρ→(σ×ρ)
σ,ρ ,

• proj
(σ×ρ)→σ
0,σ,ρ ,

• proj
(σ×ρ)→ρ
1,σ,ρ ,

• R
σ→(σ→nat→σ)→nat→σ
σ ,

and no relations (apart from equality).

(b) The rules and axioms of HAω are

• intuitionistic propositional logic with equality based on many sorts
T{nat};

• equations for the type structures:

– ∀xσ , yτ .(〈x, y〉0 = x ∧ 〈x, y〉1 = y),

– ∀xσ×τ .x = 〈x0, x1〉;
• defining equations for the constants:

– ∀xσ , yτ .kσ,τ x y =σ x
σ .

– ∀xσ→τ→ρ, yσ→τ , zσ.sσ,ρ,τ x y z =τ (x z) (y z).

– ∀xσ .yρpσ,ρ x y =σ×ρ 〈x, y〉.
– ∀xσ×ρ.(proj0,σ,ρ x = x0 ∧ proj1,σ,ρ x = x1).

– ∀xσ , yσ→nat→σ , znat.(Rσ x y 0 =σ x∧Rσ x y S(z) =σ y (Rσ x y z) z).

• Arithmetical axioms:

– ∀xnat, ynat.(S xnat =nat S ynat→xnat =nat y
nat).

– ∀xnat.¬(0 =nat S xnat).

– If FV(A(x, ~y) ⊆ {x, ~y}, then

∀~y(A(0, ~y)→∀xnat(A(x, ~y)→A(S x, ~y))→∀xnatA(x, ~y) .
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1.1.1 λ-terms in HAω

Definition 1.1.4 ‘

(a) For terms tρ in LHA and variables xσ we define (λx.t)σ→ρ as follows:

First replace in t occurrences of 〈r, s〉, r0, r1 by pτ,τ ′ r s, proj0,τ,τ ′ r,
proj1,τ,τ ′ for appropriate τ , τ ′. Let r be the resulting term, which is

an element of the set Term′ of terms, which do not have 〈s, t〉, s0, s1 as
subterms. Then λx.t := λ′x.r, where for terms r ∈ Term′ λ′x.r is defined
by induction on the length of r as follows:

• Case: x 6∈ FV(r). λ′x.r := k r.

• Case r ≡ s x, x 6∈ FV(s). λ′x.r := s.

• Otherwise

– Subcase r = xσ , σ = ρ.

λ′x.r := s(σ→(σ→σ)→σ)→(σ→σ→σ)→σ→σ
σ,σ→σ,σ kσ→(σ→σ)→σ

σ,σ→σ kσ→σ→σ
σ,σ .

– Subcase r = sτ→ρ tτ .

λ′x.r := sσ,τ,ρ(λ
′x.s)σ→τ→ρ(λ′x.t)σ→τ .

Note that λ′x.t = λx.t for t ∈ Term′, therefore we write in the following
λ instead of λ′.

(b) λx1, . . . , xn.t := λx1.λx2. . . . λxn.t.
λ~x.t := λx1, . . . , xn.t, if ~x = x1, . . . , xn.

Proposition 1.1.5 (9.1.8) Assume tρ is a term, xσ a variable. Then the fol-
lowing follows:

(a) HAω`∀yσ .(λx.t) y =ρ t[x := y].

(b) FV(λx.t) ⊆ FV(t) \ {x}.

(c) If t = t′x, x 6∈ FV(t′), then λx.t = t′.

Proof: Let s be defined for t as in Definition 1.1.4. Then, if the assertion
holds for s, it holds for t as well, so prove the assertion for s by induction
on s.
(c) follows immediately by definition and (b) follow easily using the IH.
Proof of (a):

• Case x 6∈ FV(s).

(λx.s) y ≡ k s y = s ≡ s[x := y] .

• Case s = s′ x, x 6∈ FV(s′).

(λx.s) y ≡ s′ y ≡ s[x := y] .
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• Otherwise.

– Subcase s = x.

(λx.s) y ≡ s k k y = k y (k y) = y ≡ s[x := y] .

– Subcase s = s1 s2.

(λx.s) y ≡ s (λx.s1) (λx.s2) y

= (λx.s1) y ((λx.s2) y)

= s1[x := y] s2[x := y] ≡ s[x := y] .

Exercise 1.1 (a) For every types σ, ρ, τ , terms rτ , tρ, variables xσ , zρ, s.t.z 6≡
x and z 6∈ FV(t) ∨ x 6∈ FV(r),

HAω`(λx.(t[z := r])) =σ→ρ (λx.t)[z := r] .

(b) For every types σ, ρ, term tρ, variables xσ, yσ s.t.y 6∈ FV(t), it follows

λx.t ≡ λy.(t[x := y]) .

1.1.2 The theories E−HAω, I−HAω.

Definition 1.1.6 (9.1.11)

(a) E−HAω is HAω with extensional equality:

E−HAω = HAω extended by the axioms (for every types σ, τ

(EXT) ∀yσ→τ , zσ→τ (∀xσ(y x =τ z x)→y =σ→τ z) .

One easily verifies that the full type structure and HEO are models of
E−HAω .

(b) I−HAω is HAω with intensional equality:

I−HAω = HAω extended by additional function symbols eσ→σ→nat and
the following axioms (for every type σ; let 1 := S 0)

(INT) ∀xσ , yσ.((eσ x y =nat 0∨eσ x y =nat 1)∧(eσ x y =nat 0↔x =σ y)) .

One easily verifies that the full type structure and HRO are models of
I−HAω.

Remark 1.1.7 In both E−HAω and I−HAω, the equality reduces to equality
on nat as follows:

(a) Define for rσ , sσ r =e,σ s by:

• r =e,nat s := r =nat s.
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• r =e,σ→τ s := ∀xσ .r x =e,τ s x.

• r =e,σ×τ s := r0 =e,σ s0 ∧ r1 =e,τ s1.

Then it follows for every type σ

E−HAω`∀xσ , yσ(x =σ y↔x =e,σ y) .

(b) I−HAω`∀xσ , yσ.(x =σ y↔eσ x y =nat 0).

1.1.3 Embedding of HA in HAω

Definition 1.1.8 (9.1.10)

(a) For every n-ary primitive recursive function we define a closed term tf
of type nat→· · ·→nat︸ ︷︷ ︸

n times

→nat, s. t. if we replace in the defining axioms

for prim. rec. functions in HAω f(x1, . . . , xn) by tf x1 · · ·xn, then the
resulting formulas are provable in HAω. The definition is by recursion on
the inductive definition of primitive recursive functions:

• f(~x) = 0: tf := λ~x.0.

• f(x) = S(x): tf := S.

• f(~x) = xi: tf := λ~x.xi.

• f(~x) = g(h1(~x), . . . , hn(~x)): tf := λ~x.tg (th1 ~x) · · · (thm
~x).

• f(~x, 0) = g(~x), f(~x, S(y)) = h(~x, y, f(~x, y)).

tf := λ~x.R(tg ~x)(λy, z.th ~x z y) .

Verification of the axioms in the last case:

tf ~x 0 ≡ R(tg ~x)(λy, z.th ~x z y) 0 = tg ~x.

tf ~x (S y) ≡ R(tg ~x)(λy, z.th ~x z y) (S y)

= (λy, z.th ~x z y) (R(tg ~x)(λy, z.th ~x z y) y) y

= th ~x y (R(tg ~x)(λy, z.th ~x z y) y)

≡ th ~x y (tf ~x y).

(b) If t is a term in LHA, we define a term t∗ of type nat in LHAω by

• x∗ := xnat.

• 0∗ := 0.

• (S t)∗ := S t∗.

• f(t1, . . . , tn) := tf (t∗1) · · · (t∗n).

(c) If A is a formula in LHA, we define its translation A∗ in LHAω by
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• (s = t)∗ := s∗ =nat t
∗.

• ⊥∗ := ⊥.

• (A ◦B)∗ := A∗ ◦B∗ (◦ ∈ {∧,∨,→}).
• (Sx.A)∗ := Sxnat.A∗, where S ∈ {∀, ∃}.

Lemma 1.1.9 If HA`A then HAω`A∗.

Proof:
We show more generally: If HA`B1, . . . , Bn⇒A, then HAω`B∗1 , . . . , B∗n⇒A∗
by induction on HA`B1, . . . , Bn⇒A.

• Defining equations of prim. rec. functions: see the Remark about these
axioms in Definition 1.1.8 (a).

• Logical rules, arithmetical axioms, equality rules: they coincide in HA and
HAω, ∗ commutes with the connectives.

Theorem 1.1.10 (9.1.14) I−HAω and E−HAω are conservative extensions
of HA, i.e. if A ∈ LHA, I−HAω`A∗ or E−HAω`A∗, then HA`A.

Proof:
Proof of the assertion for E−HAω :
For every HAω formula A

HEO |= A[x1 := n1, . . . , xm := nm]

can be expressed as a formula in LHA (depending on free variables n1, . . . , nm).
(Note that this is not a formula depending on a Gödel-number for A).
1. Prove: If

E−HAω`B1, . . . , Bn⇒A ,

FV(B1) ∪ · · · ∪ FV(Bn) ∪ FV(A) ⊆ {x1, . . . , xm}, then

HA ` ∀n1, . . . , nm.

(HEO |= B1[~x := ~n] ∧ · · · ∧HEO |= Bn[~x := ~n])

→HEO |= A[~x := ~n]

This follows by an easy induction on the derivation. (One first observes,
that HEO models E−HAω , and then verifies, that this proof can be
formalized in HA.
2. Prove: If t is a term of LHA, FV(t) ⊆ {x1, . . . , xn}, then

HA`∀n1, . . . , nm.t[~x := ~n] ' (t∗)HEO[~xnat := ~n]

(where [~xnat := ~n] ≡ [xnat
1 := n1, . . . , x

nat
m := nm].)

• t = xi: t[~x := ~n] ≡ ni,

(t∗)HEO[~xnat := ~n] ≡ (xnat
i )HEO[~xnat := ~n] ≡ ni .
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• t = f(t1, . . . , tn). t∗ ≡ f∗ t∗1 · · · t∗n. We show easily

HA`∀k1, . . . , kn.f(k1, . . . , kn) ' {· · · {{(f∗)HEO}(k1)} · · · }(kn) .

Now the assertion follows using the IH.

3. Show If A is a formula of LHAω , FV(A) ⊆ {x1, . . . , xn}, then

HA`∀n1, . . . , nm(A[~x := ~n]↔HEO |= A∗[~xnat := ~n]) .

For prime formulas it follows by 2. and for other formulas it follows since
“|= commutes with the logical connectives”.
4. The assertion follows by 1. and 3.

Assertion for I−HAω : Similar, using HRO instead of HEO.

1.2 Constructive real numbers (5.1 - 5.4, 6.1)

1.2.1 Introduction of Z in HA, HAω (5.1.1)

Let for z ∈ Z,

z∗ :=





0 if z = 0

2z if z > 0

2(−z) + 1 if z < 0

This yields a bijection λz.z∗ : Z→N.
We can replace now formulas in which we have apart from nat a new
ground type Z into formulas of HA (or HAω) as follows:

• interpret the ground type Z as nat.

• replace all functions and relations which originally referred to the ground
type Z, by operations, which simulate this operation on the codes. E.g. if
the original expression was zZ+z′

Z
, replace now + by a primitive recursive

function +′ such that for all z, z′ ∈ Z, z∗ +′ z′
∗

= (z + z′)∗.

• Verify, that the standard properties of the functions and relations on Z

after the translation can be shown.

Let in the following z (possibly with subscripts, indices) range over Z

(with the above interpretation), and i, j, k, l, n,m range over N.

1.2.2 Introduction of Q in HA, HAω (5.1.1)

In a similar way we can define a bijection Q→N.

Exercise 1.2 Define such a bijection explicitly

We can interpret Q in HA as before. Let in the following r, s, t, q range
over elements of Q (possibly with subscripts, accents).
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1.2.3 Principal ideas for embedding R into HAω (5.1.2)

There are two approaches:

1) Real numbers as equivalence classes of Cauchy sequences.

Idea: Real numbers are represented by sequences (qn)n∈nat, s. t.

∀m.∃N.∀k, l ≥ N |qk − ql| < 2−m

Explanations for those who do not know Cauchy sequences:√
2 should be represented by a sequence of rationals which approximates√
2 better and better, i.e. we want

∀m.∃N.∀k ≥ N.|
√

2− qk| < 2−m

However, if we haven’t introduced the reals yet, we don’t know what
|
√

2 − qk| < 2−m means. However, if we assume qk approximates
√

2
“arbitrarily” well, and if ∀k, l ≥ N.|qk−ql| < 2−n, then “|qn−

√
2| ≤ 2−n”

holds.

2) Reals as Dedekind cuts. A Dedekind cut is a set ∅ 6= A ⊆ Q s. t.

• A is bounded, i.e. ∃q ∈ Q.A < q.

• A is open, i.e. ∀q ∈ A∃r ∈ A.q < r.

• A is downward closed, i.e. ∀q ∈ A.∀q′ < q.q′ ∈ A.

(The above is the classical definition, for the constructive definitions there
are several variants, see 5.5.1) Now identify reals with Dedekind cuts.

• Advantage: Suitable for systems of 2nd order logic.

• Disadvantages:

– (−x) cannot be defined so easily

– not so concrete

In [TvD] both approaches are studied, we will only consider the first ap-
proach.

Not suitable approach Decimal representation is not a good represen-
tation. Problem: Not even multiplication by 3 can be computed. Consider
the multiplication of 0.33333333333? by 3. If the next digit is 4, then we
know the result starts with 1.00000000000. If it is 2 then we know the re-
sult starts with 0.99999999999. As long as we get only digits 0.333333 · · ·
we cannot determine therefore, what the first digit of the result is.
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1.2.4 Theory in which the following can be formalized

We are going to work in HAω extended by the axiom of countable unique
choice

(AC−NN!) (∀n.∃!m.A(n,m))→∃αnat→nat.∀n.A(n, α(n))

To work without it is almost impossible. If we used the axiom of countable
choice

(AC−NN) (∀n.∃m.A(n,m))→∃αnat→nat.∀n.A(n, α(n))

the following would be easier.

Definition 1.2.1 (5.2.1)

(a) Let in the following

• α, β, γ range over elements of type nat→nat,

• n,m, i, j, k range over nat.

• z range over Z,

• q, r, s, t range over Q

• e write α(n) instead of α n, etc.

all with possible subscripts and accents.

(b) We denote functions from N to Q (as well to other sets) by sequences
(qn)n∈N or (qn)n or even (qn). If introduced as a new sequence (qn)n∈N

should be read as λn.qn.

1.2.5 Introduction of R in HAω (5.2.2)

Definition 1.2.2 (2.2)

(a) A fundamental sequence is a sequence (qn)n∈N of rationals together with
some βnat→nat (called Cauchy-modulus) s. t.

∀k.∀m,m′ ≥ β(k).(|qm − qm′ | < 2−k)

(b)
(qn) ≈ (rn) :⇔∀k.∃N.∀m ≥ N.|qm − rm| < 2−k

(c) We will usually only indicate the sequence (qn)n∈nat of a fundamental
sequence, and refer to the Cauchy-modulus as the “Cauchy-modulus of
(qn)”.

(d) The set of Cauchy-reals R is the set of equivalence classes of fundamental
sequences modulo ≈. We write [(qn)] for the equivalence class of (qn)
modulo ≈.
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Remark 1.2.3 (a) ≈ is an equivalence relation.

(b) With (AC−NN) we could define fundamental sequences by demanding

∀k.∃N.∀m,m′ ≥ N(|qm − qm′ | < 2−k)

since (AC−NN) provides then immediately from this property a Cauchy-
modulus.

Definition 1.2.4 The set of reals can now be formalized as follows:

• ∀xR has to be replaced by

∀qnat→Q.∀αnat→nat.(qn) is a fundamental sequence with Cauchy-modulus α→· · ·

where in the following x has to be replaced by (qn).

• Equality between elements of R has to be replaced by ≈.

• Operations on reals have to be replaced by operations on the sequences,
as will be introduced below.

Let in the following x, y, z range over R (with indices and accents).

1.2.6 The ordering of the reals (5.2.3 - 5.2.15)

Definition 1.2.5 (a) Let HA+ be the extension of HAω by (AC−NN!).

(b) In the following all statements (in so far they are statements of HA+ can
be proved in HA+.

(c) We write (qn) ∈ x for “the real number x is given by the fundamental
sequence (qn)” (with some Cauchy modulus)

(d) We write 〈(qn), α〉 ∈ x for “the real number x is given by the fundamental
sequence (qn) with Cauchy modulus α.

Remark 1.2.6 To define a function/relation on reals means in the following
to define a function/relation on fundamental sequences such that HA+ proves,
that it respects the equality ≈ on reals.
From this it follows that the equality axioms with respect to the extension by
symbols for the new functions and relations are provable in HA+ (i.e. their
translation into formulas of LHAω are theorems of HA+, where the new relations
and functions are translated by their definition).

Proposition 1.2.7 (Prop. 5.2.3)
Assume (qn), (rn) are fundamental sequences with Cauchy-modulus α, β, (qn) ≈
(rn) and define γ(k) := max{α(k + 2), β(k + 2)}. Then

∀m,m′ ≥ γ(k).|qm − rm′ | < 2−k .
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Proof:
Assume k. Assume m0 s. t.

∀l ≥ m0.|ql − rl| < 2−(k+2) .

Define m1 := max{γ(k),m0}. Then for all m,m′ ≥ γ(k) we have

|qm − rm′ | ≤ |qm − qm1 |+ |qm1 − rm1 |+ |rm1 − rm′ |
< 2−(k+2) + 2−(k+2) + 2−(k+2) < 2−k

Definition 1.2.8 (Def. 5.2.4)
For fundamental sequences (qn), (rn) we define

(qn) < (rn) :⇔∃k,N.∀m ≥ N.rm > qm + 2−k .

Proposition 1.2.9 If (qn) < (rn), (qn) ≈ (q′n), (rn) ≈ (r′n), then (q′n) < (r′n).

Proof:
(Not to be carried out in the lecture).
There exists k, N1, N2, N3 s. t.

∀m ≥ N1 . rm > qm + 2−k

∀m ≥ N2 . |qm − q′m| < 2−(k+2)

∀m ≥ N3 . |rm − r′m| < 2−(k+2)

Then with N := max{N1, N2, N3} it follows

∀m ≥ N.r′m > q′m + 2−(k+2)

Definition 1.2.10 (Def. 5.2.7.; <, ≤, # on R)
Let x, y ∈ R (qn) ∈ x, (rn) ∈ y.
We define

x < y :⇔ (qn) < (rn)
x ≤ y :⇔ ¬(y < x)
x # y :⇔ x < y ∨ y < x

# is called apartness.
x # y is pronounced as “x is apart from y”.
OBS x ≤ y is not defined as x ≤ y ∨ x = y.

Definition 1.2.11 (Definition 5.2.6.)
Define

∗ : Q→R

q 7→ q∗ := (qn) with Cauch modulus λn.0

We identify q with q∗.
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Proposition 1.2.12 (Proposition 5.2.8.)
Let x, y ∈ R, (rn) ∈ x, (sn) ∈ y.
Then

x # y↔∃k,N.∀n ≥ N.|qn − rn| > 2−k .

Proof: Exercise.

Proposition 1.2.13

(AP1) ¬(x # y) ↔ x = y
(AP2) x # y ↔ y # x
(AP2) x # y → ∀z(x # z ∨ z # y)

Proof:
(Not to be carried out in the lecture)
(AP1):
x = y→¬(x # y) is clear.
Assume ¬(x # y) and show x = y.
Let 〈(qn), α〉 ∈ x, 〈(rn), β〉 ∈ y.
Assume k. By assumption

∀N.¬∀m ≥ N |qm − rm| > 2−(k+2) (∗)
∀m,m′ ≥ α(k + 2).|qm − qm′ | ≤ 2−(k+2)

∀m,m′ ≥ β(k + 2).|rm − rm′ | ≤ 2−(k+2)

Let
m ≥ N := max{α(k + 2), β(k + 2)} .

Assume
|qm − rm| ≥ 2−k .

Then, for all m′ ≥ N

|qm′ − rm′ | ≥ |qm − rm| − |qm − qm′ | − |rm − rm′ |
≥ 2−k − 2−(k+2) − 2−(k+2)

= 2−(k+1)

> 2−(k+2)

contradicting (∗).
Therefore with N as above it follows the assertion.

(AP 2): trivial.
(AP 3): Exercise.

Corollary 1.2.14 (Corollary 5.2.10).
Stability of = on R:

∀x, y.(¬¬x = y↔x = y)

Proof:

¬¬(x = y)↔¬¬¬x # y↔¬x # y↔x = y .
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Proposition 1.2.15 (Proposition 5.2.11.)
Assume x, y, z ∈ R.

(a) (x ≤ y ∧ y ≤ x)→x = y.

(b) (x < y ∧ y < z)→x < z.

(c) x < y→(x < z ∨ z < y).

(d) (x < y ∧ y ≤ z)→x < z.

(e) (x ≤ y ∧ y < z)→x < z.

(f) (x ≤ y ∧ y ≤ z)→x ≤ z.

(g) x ≤ y→¬¬(x < y ∨ x = y).

(h) ¬¬(x ≤ y ∨ y ≤ x).

(i) ¬¬(x < y ∨ x = y ∨ y < x).

Proof:
(Not to be carried out in the lecture).
(a):

x ≤ y ∧ y ≤ x → ¬(y < x) ∧ ¬(x < y)
→ ¬(y < x ∨ x < y)
↔ ¬x # y
↔ x = y

(b): Easy.
(c):
By x < y it follows

x # y

by (AP 3)
x # z ∨ z # y

therefore
(x < z ∨ z < x) ∨ (z < y ∨ y < z)

By (b) and x < y therefore

x < z ∨ z < y ∨ z < y ∨ x < z ,

the assertion.
(d) Assume (x < y) ∧ y ≤ z. By (c)

x < z ∨ z < y .

By y ≤ z we have ¬(z < y), therefore

x < z .
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(e) Similarly.
(f) Assume x ≤ y, y ≤ z.
Assume

z < x .

Then
z < y by x ≤ y, (d)
z < z by y ≤ z, (d)
z # z
z 6= z contradiction.

(g) - (i): Exercise.

Weak counterexample for x = 0 ∨ x 6= 0.
If A(y) is a decidable statement s. t. whether ∀y.A(y) holds is not known,
let α be defined by

qn :=

{
2−m if m ≤ n,¬A(m), ∀k < m.A(k)

2−n if ∀k ≤ n.A(k)

Then qn is a fundamental sequence with Cauchy-modulus λn.n + 1, and
with x given by (qn),

∀n.A(n) → x = 0
∃n.¬A(n) → ∃n.x = 2−n therefore x 6= 0

therefore x = 0 ∨ x 6= 0 is not constructively valid.
Taking A(n) := ¬T(m,m, n) we get A(n)↔{m}(m) ↑, therefore from

∀x.(x = 0 ∨ x 6= 0)

we could conclude
∀m({m}(m) ↓ ∨{m}(m) ↑)

which is not Kleene-realizable, therefore (since all theorems of HA+ are
realizable) not provable in HA+.

Definition 1.2.16 (Definition 5.2.13) For x, y ∈ R we define x+y, x−y, |x| ∈ R

as follows:
Let (qn) ∈ x, (rn) ∈ y.
Then one verifies that for some appropriate Cauchy-moduli

(qn + rn) ,
(qn − rn) ,

(|qn|) ,

are fundamental sequences.
The definition respects ≈. Let now x + y, x − y, |x| be given by (qn + rn),
(qn − rn), (|qn|).
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Remark 1.2.17 For r ∈ Q

r > 0→x < x+ r

Proof: Easy.

Proposition 1.2.18 (Proposition 5.2.14)

x ≤ y↔∀k.x < y + 2−k .

Proof:
(Not to be carried out in the lecture).
“→”: x ≤ y < y + 2−k.
“←” Assume ∀k.x < y + 2−k, y < x. From the definition of < it follows
immediately for some m

y + 2m < x

Therefore
y + 2m < x < y + 2m

a contradiction. x ≤ y.

Proposition 1.2.19 Assume x, y, z ∈ R, (qn) ∈ x.

(a) ∀m ≥ n(|qn − qm| ≤ 2−k→|x− qn| ≤ 2−k

(b) |x− y| ≤ r↔x− r ≤ y ≤ x+ r

(c) (|x− y| ≤ r ∧ |y − z| ≤ r′)→|x− z| ≤ r + r′

Proof: [TvD] or exercise.

1.2.7 Real valued functions (5.3.3)

Definition 1.2.20 (a) σk := σ × · · · × σ︸ ︷︷ ︸
ktimes

.

(b) We write

• (a1, . . . , an) for 〈a1, 〈a2, . . . 〈an−1, an〉〉〉,
• f(a1, . . . , an) for f((a1, . . . , an)),

• f(a) for f a.

Lemma 1.2.21 (a) ∀x((∀k(|x| < 2−k)→x = 0).

(b) ∀x.∀k.∃q.|x − q| < 2−k.

(c) ∀x.∃k.|x| < k.

(d) ∀x, y, z(|x− z| ≤ |x− y|+ |y − z|).
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(e) ∀x, x′, y, y′((x < y ∧ x′ < y′)→x+ x′ < y + y′).

Proof: Easy exercise.

Definition 1.2.22 A function f : Rm→R is in the following given by functions

f0 : (nat→Q)m→(nat→Q),
α : (nat→Q)m→(nat→nat)m→(nat→nat)

where α is called the Cauchy-modulus-function, such that

• If (qi
n) are fundamental sequences with Cauchy-modulus βk, then f0((q

1
n), . . . , (qm

n ))
is a fundamental sequence with Cauchy-modulus

α0((q
1
n), . . . , (qm

n ), β0, . . . , βm) .

• If (qi
n) ≈ (ri

n), then

f0((q
1
n), . . . , (qm

n )) ≈ f0((r1n), . . . , (rm
n )) .

Remark 1.2.23 (a) What we really would like to have is that a function

f : Rm→R

is a function, which takes as arguments fundamental sequence (qi
n), Cauchy-

moduli αi and proofs that qi
n are fundamental sequences with moduli αi

and maps this to a fundamental sequence (q′n), a Cauchy-modulus β and
a proof that (q′n) is a fundamental sequence with modulus β together with
a proof that this function respects ≈. However this cannot be expressed in
HA+ (but for instance in dependent type theory), neither could we make
use there of the proof that qi

n are fundamental sequences except for the
proof of q′n being a fundamental sequence, and this dependency we have.

(b) It might be that f0 has to depend on the Cauchy-moduli αi for (qi
n) as well

as well.

Definition 1.2.24 (Definition 5.3.1)
Assume ~x, ~y ∈ Rn or ~x, ~y ∈ Qn, r ∈ Q. Let

~0 := (0, . . . , 0) .

(a)
|~x− ~y| ≤ r := |x1 − y1| ≤ r ∧ · · · ∧ |xn − yn| ≤ r .

(b)
|~x| ≤ r := |~x−~0| ≤ r

Definition 1.2.25 (Definition 5.3.2)
Let f : Xn→Y , where X,Y ∈ {Q,R}.
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(a) f is uniform continuous with modulus α iff

∀k.∀~x, ~y ∈ Xn(|~x− ~y| < 2−α(k)→|f(~x)− f(~y)| < 2−k)

(b) f is locally continuous with modulus α iff

∀k,m.∀~x, ~y ∈ Xn ((|~x| < m ∧ |~y| < m)
→|~x− ~y| < 2−α(k,m)

→|f(~x)− f(~y)| < 2−k)

Remark 1.2.26 Under assumption of (AC − NN) we can omit the Cauchy-
modulus and replace the conditions above by demanding for all k (for all k,m)
the existence of an i such that for all ~x, ~y the matrix of the above formulas with
α(k) (α(k,m)) replaced by i holds.

Definition 1.2.27 (Definition 5.3.4)
Let f : Qn→Q be locally continuous. Then the canonical extension f ∗ : Rn→R

is given by:
If (qk

n)i ∈ xi then
f∗(~x) := (f(q1n, . . . , q

n
n))n∈nat ,

where the corresponding Cauchy-modulus-function and the proof that f ∗ re-
spects equality are left as an exercise.

Exercise 1.3 (a) Show ∀x ∈ R∃n.|x| < n.

(b) Determine the Cauchy-modulus-function and the proof that f ∗ respects
equality in Definition 1.2.27.

Remark 1.2.28 For an arbitrary (not in general locally continuous) function
f : Qn→Q we cannot in general determine an extension f ∗. (Why? Do non-
locally continuous functions exists?)

Lemma 1.2.29 (Theorem 5.3.5) For every locally-continuous function f : Qn→Q

then f∗ is the unique locally continuous function f ∗ : Rn→R extending f (i.e.
such that

∀~q ∈ Qn.f∗(~q) = f(~q) ) .

Proof:
For notational simplicity assume f is uniformly continuous and n = 1.
Let f be uniformly continuous with modulus α. We show f ∗ is uniformly
continuous with modulus λk.α(k + 1).
Assume k, x, y, |x − y| < 2−α(k+1), (qn) ∈ x, (rn) ∈ y. There exists N s.
t.

∀k ≥ N.|qk − rk| < 2−α(k+1)

Then
∀k ≥ N.|f(qk)− f(rk)| < 2−(k+1)
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and therefore
∀k ≥ N.|f(qk)− f(rk)|+ 2−(k+2) < 2−k

|f(x)− f(y)| < 2−k .

Uniqueness of f . Let fo be another locally continuous extension of f .
We assume for simplicity fo is uniformly continuous with modulus β. Let
x ∈ R, k ∈ N.
By the continuity of f∗ and fo there exists l such that for y, |y−x| < 2−l,
we have

|f∗(y)− f∗(x)| < 2−(k+1) ,
|fo(y)− fo(x)| < 2−(k+1) .

Let q ∈ Q such that |x − q| < 2−l. Then f∗(q) = f(q) = fo(q) and
therefore

|f∗(x) − fo(x)| ≤ |f∗(x)− f∗(q)|+ |fo(q)− fo(x)|
< 2−(k+1) + 2−(k+1)

= 2−k

Since k is arbitrary it follows f∗(x) = fo(x).

Lemma 1.2.30 (Corollary 3.5, Prop 3.6, Prop 3.8)

(a) +, −, ·, | · | are the unique locally continuous extensions of the correspond-
ing functions on Q to R.

(b) λx, y.max{x, y}, λx, y.min{x, y} can be extended from Q to R.

(c) Let ϕ(x1, . . . , xn), ψ(x1, . . . , xn) be terms build from Variables xi using
some q ∈ Q and +, −, ·, | · |, λx, y.max{x, y}, λx, y.min{x, y}. Then
from

∀q1, . . . , qn ∈ Q.ϕ(q1, . . . , qn) = ψ(q1, . . . , qn)

it follows

∀x1, . . . , xn ∈ Q.ϕ(x1, . . . , xn) = ψ(x1, . . . , xn)

The same holds with = replaced by ≤.

Proof:
(a), (b). Immediate.
(c) It follows easily that λ~x.ϕ(~x), λ~x.ψ(~x) are locally continuous and the
unique extensions of the corresponding functions on Q. Therefore the
assertion for = follows.
For ≤ we show below in Lemma 1.2.31 (b)

x ≤ y↔max{x, y} = y

and then the assertion follows by replacing the above equation by

max{ϕ(~x), ψ(~x)} = ψ(~x) .
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Lemma 1.2.31 (Proposition 5.3.7 and 5.3.9)

(a) (y < x ∨ y = x)→
(max{x, y} = x ∧min{x, y} = x).

(b) x ≤ y↔max{x, y} = y↔min{x, y} = x

(c) |x− y| = max{x, y} −min{x, y}.

(d) x < y↔x+ z < y + z.

(e) x ≤ y↔x+ z ≤ y + z.

(f) |x− y| ≤ z↔x− z ≤ y ≤ x+ z.

(g) min{x, y} ≤ x ≤ max{x, y}.

(h) min{x, y} ≤ y ≤ max{x, y}.

(i) |x− y| ≥ ||x| − |y||.

(j) x # y→(x+ z) # (y + z).

(k) (x+ y) # 0→(x # 0 ∨ y # 0).

(l) xy # 0→(x # 0 ∧ y # 0).

Proof: [TvD]. But everybody should be able to do this by hand.

1.2.8 Completeness of R (5.4)

Definition 1.2.32 (a) A sequence of reals is a function

q : nat→nat→nat

written as
(qn,m)n,m∈nat ,

together with a modulus of it

α : nat→nat→nat

such that for n ∈ nat

(qn,m)m∈nat is a fundamental sequence with modulus α(n) .

If xn is the real given by

(qn,m)n,m∈nat ,

then we denote such a sequence by

(xn)n∈nat .
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(b) A sequence of reals (xn)n∈nat converges against x iff there exists a modulus
of convergence β : nat→nat such that

∀n.∀b ≥ β(n)(|xn − x| < 2−n) .

(c) A sequence of reals (xn)n∈nat is a Cauchy sequence with Cauchy-modulus
β : nat→nat iff

∀k.∀l,m ≥ β(k)|xl − xm| < 2−k .

Theorem 1.2.33 (Theorem 5.4.2) R is Cauchy-complete, i.e. if (xn) is a
Cauchy sequence, then there exists an x ∈ R such that xn converges against
x.

Proof:
Let α be a modulus, β be a Cauchy-modulus for (xn), (xn) given by
(qn,m)n,m.
Let γ defined by

γ(0) := β(0), γ(n+ 1) := max{β(n+ 1), γ(n)}+ 1

γ is as well a Cauchy-modulus for (xn) such that ∀n,m(n < m→γ(n) <
γ(m)).
Let

rn := qα(γ(n),n),γ(n) .

Then
|xγ(n) − rn| ≤ 2−n

and therefore for m,m′ ≥ n

|rm − rm′ | ≤ |rm − xγ(m)|+ |xγ(m) − xγ(m′)|+ |xγ(m′) − rm′ |
≤ 2−n + 2−n + 2−n < 2−n+2

Therefore (rn) is a fundamental sequence with modulus λn.n + 2. Let x
be given by (rn). (xn) converges against x with modulus λn.γ(n+ 3):
Let m ≥ γ(n+ 3). Then

|x− xm| ≤ |x− rn+3|+ |rn+3 − xγ(n+3)|+ |xγ(n+3) − xm|
≤ 2−(n+1) + 2−(n+3) + 2−(n+3)

< 2−n

1.2.9 Intermediate value and existence of minimum/maximum
theorems (6.1)

6.1. in [TvD] shows which variant of the intermediate value theorem and
the theorem of the existence of minimum/maximum is constructively valid
and which not (e.g. the theorem of the existence of minimum/maximum
isn’t but the existence of a supremum/infimum for totally bounded func-
tions is). This section is very easy to read and therefore not worked out
here.



Chapter 2

λ-Calculus and
Combinatory Logic ([HS86])

Numbers will refer from now on to the book of Hindley and Seldin.

2.1 λ-calculus (1)

2.1.1 Introduction

We have already dealt considered λ-terms already in our investigations
of HAω. λx.t was there the function, which applied to a term s yields
t[x := s]. In the case of HAω we had obtained typed λ-terms: λx.t was of
type σ→τ , and could only be applied to a term of type σ. Forming terms
like this yields the typed λ-calculus.
This excludes however the application of a function to itself. If we consider
the identity function λx.x, then this function could be applied to any
object, as well the function λx.x. So to form (λx.x)(λx.x) makes sense
(this can be typed, but both occurrences of λx.x get different types),
therefore as well (λx.xx)(λx.x) which should yield the above result. But
the sub-term xx cannot be typed: x must have type σ→ρ and at the same
time σ for some σ, ρ.
In programming it is interesting to apply a program to itself. However
we cannot expect that a program behaves very well. We will see is that
the typed λ-calculus is strongly normalizing, i.e. when we reduce a term
in a way as above described (applying such reductions to sub-terms as
well), we always obtain an irreducible term, independent of the choice
of reductions. For the untyped λ-calculus this is not the case: Take the
term (λx.xx)(λx.xx). It reduces to itself, and has therefore an infinite
reduction sequence.
The relationship between typed λ-calculus and untyped λ-calculus is some-
how similar to that of primitive recursive functions and partial recursive
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functions. Primitive recursive functions always terminate, but there are
computable functions which are not primitive recursive. Partial recursive
functions might terminate or might not, but they contain all recursive
function (we will see that all partial recursive functions can be repre-
sented in the untyped λ-calculus; the class of definable functions in the
typed λ-calculus is very small: it’s the least class of numeric functions
containing projections, the constant functions, the signumbar function
(0 7→ 1), (S(n) 7→ 0) (from which the signum function 0 7→ 0, S(n) 7→ 1
can be defined), addition, multiplication and is closed under composition).
We can extend the class of primitive recursive functions, but as long as we
do this in a recursively enumerable way (i.e. such that there is a recursively
enumerable subset A of N×N such that the resulting class of functions is
{{e}n | 〈e, n〉 ∈ A}) we will not exhaust the class of recursive functions.
Similarly, by extending a type system in such a way that, whether a term
can by typed, is decidable and such that all terms which can be typed
are normalizing, we will never obtain all normalizing terms. If we have
a type system such that the set of terms which can be typed and map
certain encodings of the natural numbers (so called Church-numerals) to
such encodings is recursive enumerable, then there will always be a term
mapping Church-numerals to Church-numerals which cannot be typed.
We will start with the untyped λ-calculus and will later look at the typed
one.
Further, we will look as well at combinators, which allowed us in the case
of HAω to define all λ-terms. Essentially the theory of combinators and
the theory of λ-terms are equivalent, but there are fine distinctions to be
made, which will be explored.

Definition 2.1.1 Some conventions

(a) Let m1, . . . ,mn 7→ 〈m1, . . . ,mn〉 some primitive recursive coding of se-
quence such that standard properties hold and such that 0 = 〈〉.

(b) If m = 〈m1, . . . ,mk〉, (m)i := mi and the length of the sequence m
(seqlength(m)) is defined as k.

(c) If m = 〈m1, . . . ,mk〉, n = 〈n1, . . . , nl〉, m∗n := 〈m1, . . . ,mk, n1, . . . , nl〉.

2.1.2 Definition of λ-terms (1A, 1B)

Definition 2.1.2 (Definition 1.1).

(a) Assume some infinite sequence of distinct symbols, called variables, and a
(finite, infinite or empty) sequence of distinct symbols called constants.

(If the sequence of constants is empty, the system is called pure, otherwise
applied).

The set of expressions called λ-terms is inductively defined as follows:

• All variables and constants are λ-terms (called atoms).
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• If M , N are λ-terms, so is (MN) (called an application).

• If M is a λ-term, x a variable, then (λx.M) is a λ-term (called an
abstraction).

(b) In this chapter capital roman letters will denote λ-terms. In this part
x, y, z, u, v, w will denote variables.

(c) Parenthesis will be omitted with the following conventions

• Application is associative to the left (MNPQ denotes (((MN)P )Q)).

• The scope of λx. is maximal (i.e. λx.PQ denotes λx.(PQ),

(d) λx1, . . . , xn.M := λx1.λx2. . . . λxn.M .

(e) We write M ≡ N for syntactic identity of the terms M , N .

Definition 2.1.3 (Definition 1.5)

(a) The length of a term M (written as lgh(M )) is defined as:

• lgh(a) := 1 if a is an atom.

• lgh(MN) := lgh(M) + lgh(N).

• lgh(λx.M) := 1 + lgh(M).

Induction on M means in the following (OBS!) induction on lgh(M).

Definition 2.1.4 We define the sets of free variables FV(N) and of bound
variables BV(N) of a term N as follows:

• FV(a) := BV(a) := ∅ if a is a constant.

• FV(x) := {x}, BV(x) := ∅.

• FV(MN) := FV(M) ∪ FV(N), BV(MN) := BV(M) ∪ BV(N).

• FV(λx.M) := FV(M) \ {x}, BV(λx.M) := BV(M) ∪ {x}.

Var(M) := FV(M) ∪ BV(M).

2.1.3 Substitution (In 1B)

Definition 2.1.5 (1.11) For M,N, x we define M [x := N ], the result of sub-
stituting N for x in M by induction on the M in such a way that, if N is a
variable, then lgh(M [x := N ]) = lgh[M ], as follows:

• x[x := N ] := N .

• a[x := N ] := a (a an atom, a 6≡ x).

• (PQ)[x := N ] := (P [x := N ])(Q[x := N ]).
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• (λx.P )[x := N ] := λx.P .

• (λy.P )[x := N ] := λy.(P [x := N ]), if x 6≡ y, y 6∈ FV(N) ∨ x 6∈ FV(P ).

• (λy.P )[x := N ] := λz.((P [y := z])[x := N ]), if x 6≡ y, y ∈ FV(N) ∧ x ∈
FV(P ), z the first variable s. t. z 6∈ FV(N) ∪ FV(P ).

Remark: The last clause in Definition 2.1.5 renames the bound variable y
first, such that there is no variable clash and therefore N is now substi-
tutable for x in the new term, and then carries out the substitution.

Lemma 2.1.6 (1.14)

(a) M [x := x] ≡M .

(b) x 6∈ FV(M)⇒M [x := N ] ≡M .

(c) x ∈ FV(M)⇒FV(M [x := N ]) = FV(N) ∪ (FV(M) \ {x}).

(d) lgh(M [x := y]) = lgh(M).

Proof: Easy.

Lemma 2.1.7 (1.15) Let x, y, v be distinct variables, BV(M)∩FV(vPQ) = ∅.

(a) v 6∈ FV(M)⇒M [x := v][v := P ] ≡M [x := P ].

(b) v 6∈ FV(M)⇒M [x := v][v := x] ≡M .

(c) y 6∈ FV(P )⇒M [y := Q][x := P ] ≡M [x := P ][y := Q[x := P ]].

(d) M [x := Q][x := P ] ≡M [x := (Q[x := P ])].

Proof:
(a), (c): Induction on M. (b) follows from (a) and Lemma 2.1.6 (a), (d)
from (c) and 2.1.6 (b).

Definition 2.1.8 New version of (1.16)
The relation M ≡α N , M is α-equivalent to N is defined as follows:

• If a is an atom, a ≡α a.

• If M ≡α M
′, N ≡α N

′, then MN ≡α M
′N ′.

• If v 6∈ Var(M) ∪ Var(N), M [x := v] ≡α N [y := v], then λx.M ≡α λy.N .

Lemma 2.1.9 (a) ≡α is reflexive and symmetric.

(b) If M ≡α N , then M [x := v] ≡α N [x := v].

(c) ≡α is an equivalence relation.

(d) If P ≡α Q then FV(P ) = FV(Q).
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(e) For every term P and x1, . . . , xn there exists P ′ ≡α P such that x1, . . . , xn 6∈
BV(P ′).

Proof:
(a): trivial. (b): Easy induction on M , using Lemma 2.1.7 (a) and (c).
(c): Induction onM , using (b) and Lemma 2.1.7 (a) in the caseM ≡ λx.P .
(d) Trivial.
(e) Easy.

Lemma 2.1.10 (1.18, 1.19) Let x, y, v be distinct variables.

(a) v 6∈ FV(M)⇒M [x := v][v := P ] ≡α M [x := P ].

(b) v 6∈ FV(M)⇒M [x := v][v := x] ≡α M .

(c) y 6∈ FV(P )⇒M [y := Q][x := P ] ≡α M [x := P ][y := Q[x := P ]].

(d) M [x := Q][x := P ] ≡α M [x := (Q[x := P ])].

(e) M ≡α M
′, N ≡α N

′ ⇒ M [x := N ] ≡α M
′[x := N ′].

Proof: as before, in (e) Induction on M .

2.1.4 β-reduction (1C)

Definition 2.1.11 (a) Inductive definition of the relation M −→β N :

• (λx.M)N −→β M [x := N ].

• If M −→β M
′ then

– MN −→β M
′N ,

– NM −→β NM
′,

– λx.M −→β λx.M
′.

(b) −→∗
β is the transitive reflexive closure of −→β ∪ ≡α.

(c) A term N is in β-normal form, if there is no term N ′ s. t. N −→β N
′.

(d) If P −→∗
β Q, Q is a term in β-normal form, then Q is called a β-normal

form of P .
P normalizes, if it has a β-normal form.

(e) We omit the subscript β in the above definitions, if there is no confusion.

Example 2.1.12 (a) (λx.(λy.yx)z)v has β-normal form zv.

(b) Let L := (λx.xxy)(λx.xxy)

L −→β Ly −→β Lyy −→β · · · .

L has no β-normal form.
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(c) Let P := (λu.v)L, L as in (b). There are (among others) two reduction
sequences:

• P −→β v.

• P −→β (λu.v)(Ly) −→β (λu.v)(Lyy) −→β · · · .

P has normal form v, but also an infinite reduction sequence.

Lemma 2.1.13 (1.27) If P ≡α P
′, Q ≡α Q

′, P −→∗
β Q, then P ′ −→∗

β Q
′.

Proof:
Trivial: P ′ ≡α P −→∗

β Q ≡α Q
′.

Lemma 2.1.14 (1.28; Substitution lemma for β-reduction) Assume P −→∗
β Q.

(a) FV(Q) ⊆ FV(P ).

(b) M [x := P ] −→∗
β M [x := Q].

(c) P [x := N ] −→∗
β Q[x := N ].

Proof: It suffices to consider the case P −→β Q (the case P ≡α Q follows
by Lemma 2.1.10 (e), 2.1.9 (d)).
(a) By Lemma 2.1.6 (b), (c) FV(M [x := N ]) ⊆ FV((λx.M)N).
(b) By Lemma 2.1.10 (e) we can assume BV(M)∩ (Var(P )∪Var(Q)) = ∅.
Now induction on M .
(c) Again assume BV(P ) ∩ FV(N) = ∅. The only difficult case is where
P ≡ (λy.H)J and Q ≡ H [y := J ].
Then

P [x := N ] ≡ ((λy.H)J)[x := N ]
≡ ((λy.(H [x := N ]))(J [x := N ])
−→β H [x := N ][y := J [x := N ]]
≡ H [y := J ][x := N ] by Lemma 2.1.7 (c), 2.1.10 (c)
≡ Q[x := N ]

Theorem 2.1.15 (1.29, Church-Rosser theorem for β-reduction)
If P −→β M , P −→β N , then there exists T such that M −→∗

β T , N −→∗
β T .

Proof:
We follow Takahashi, [Tak95]

Definition 2.1.16 (a) ([Tak95] 1.1)

The parallel β-reduction, denoted by =⇒β is defined inductively defined
as

• a =⇒β a, if a is an atom.

• If v 6∈ Var(M)∪Var(M ′), M [x := v] =⇒β M
′[y := v], then λx.M =⇒β

λy.M ′.



2.1. λ-CALCULUS (1) 35

• If M =⇒β M
′, N =⇒β N

′, then MN =⇒β M
′N ′.

• If M [x := u] =⇒β M ′, N =⇒β N ′, u 6∈ Var(M) ∪ Var(N ′), then
(λx.M)N =⇒β M

′[u := N ′].

(b) For λ-terms M define M∗ by induction on M as follows:

• a∗ := a (a an atom).

• (λx.M)∗ := λx.M∗.

• (M1M2)
∗ := (M∗

1 )(M∗
2 ), if M1 not of the form λx.M ′.

• ((λx.M1)M2)
∗ := M∗

1 [x := M∗
2 ].

Lemma 2.1.17 (a) M =⇒β M .

(b) M =⇒β M
′, v 6∈ Var(M) ∪ Var(M ′), then M [x := v] =⇒β M

′[x := v].

(c) If M ≡α M
′ =⇒β N

′ ≡α N , then M =⇒β N .

(d) If M =⇒β M
′, then M [x := N ] =⇒β M

′[x := N ].

(e) If M −→β M
′, then M =⇒β M

′.

(f) If M =⇒β M
′, then M −→∗

β M
′.

(g) If M =⇒β M
′, N =⇒β N

′, then M [y := N ] =⇒β M
′[y := N ′].

(h) −→∗
β is the transitive closure of =⇒β.

(i) If M =⇒β N then N =⇒β M
∗.

Proof: (a) - (d) are easy. (e) by Induction on M −→β M ′. (f), (g) by
induction on M . (h) by (e), (f).
(i): Induction on M :
Case M ≡ a =⇒β N :

N ≡ a =⇒β a ≡M∗ .

Case M ≡ λx.M1 =⇒β N . Then N ≡ λy.N1 for some N1,

M1[x := v] =⇒β N1[y := v]

for some variable v 6∈ Var(M1)∪Var(N1). W.l.o.g. (by (b)) v 6∈ Var(M∗
1 ).

M1[x := v] has smaller length than N , therefore by IH N1[y := v] =⇒β

M1[x := v]∗ ≡M∗
1 [x := v],

λy.N1 =⇒β λx.M
∗
1 ≡M∗ .

Case M ≡M1M2 =⇒β N , M not a β-redex. Then N ≡ N1N2 for some
Ni s. t. Mi =⇒β Ni (i = 1, 2),

N1N2 =⇒β M
∗
1M

∗
2 ≡M∗ .
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Case M ≡ (λx.M1)M2 =⇒β N . Then

N ≡ (λx.N1)N2 or N ≡ N1[x := N2]

for some Ni s. t.
Mi =⇒β Ni

(i = 1, 2). By IH
Ni =⇒β M

∗
i

(i = 1, 2).
Subcase N ≡ (λx.N1)N2.

N =⇒β M
∗
1 [x := M∗

2 ] ≡M∗ .

Subcase N ≡ N1[x := N2].

N =⇒β M
∗
1 [x := M∗

2 ] ≡M∗

by (g).

Lemma 2.1.18 (Diamond property for =⇒β) Assume

• M =⇒β N1,

• M =⇒β N2,

Then there exists some M ′ such that

• N1 =⇒β M
′,

• N2 =⇒β M
′.

Proof: M ′ := M∗.

Definition 2.1.19 Define P =⇒k
β Q by:

• P =⇒0
β P .

• If P =⇒k
β Q =⇒β R, then P =⇒k+1

β R.

Lemma 2.1.20 If

• M =⇒k
β N1,

• M =⇒l
β N2,

then there exists some M ′ s. t.

• N1 =⇒l
β M

′,

• N2 =⇒k
β M

′.
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Proof: First proof for l = 1 by induction on k:
k = 0: N1 ≡M , M ′ := N2.

k→k + 1: Let

M =⇒k
β N

′
1 =⇒β N1 .

By IH there exists some M ′′ s. t.

N ′
1 =⇒β M ′′,

N2 =⇒k
β M ′′ .

By the Diamond property Lemma 2.1.18 there exists M ′ s. t.

N1 =⇒β M ′ ,
M ′′ =⇒β M ′ .

Similarly follows now by induction on l the full assertion.

Proof of Theorem 2.1.15: Lemmata 2.1.20, 2.1.17 (h).

Corollary 2.1.21 (Corollary 1.29.1) If P has β-normal forms M , N then
M ≡α N .

Proof: There exists T , s. t.

M −→∗
β T ,

N −→∗
β T

By M , N in normal form follows

M ≡α T
N ≡α T

Lemma 2.1.22 (Lemma 1.30) The class of β-normal forms is the smallest
class A s. t.

• All atoms are in A.

• If M1, . . . ,MN ∈ A, a is any atom, then

aM1, . . . ,Mn ∈ A .

• If M ∈ A, then λx.M ∈ A.

Proof: Immediate.
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2.1.5 β-equality (1D)

Definition 2.1.23 (1.32) Let =β be the symmetric and transitive closure of
−→∗

β.
We say P is β-equal or β-convertible to Q if P =β Q.
It follows immediately that =β is reflexive as well.

Lemma 2.1.24 (1.33)
If

P ′ ≡α P =β Q ≡α Q
′

then
P ′ =β Q

′ .

Lemma 2.1.25 (1.34, Substitution lemma for β-equality).
Assume P =β Q.

(a) M [x := P ] =β M [x := Q].

(b) P [x := N ] =β Q[x := N ].

Theorem 2.1.26 (1.35; Church-Rosser theorem for β-equality)
If

P =β Q

then there exists T s. t.
P −→∗

β T ←∗
β Q

Proof:
Define

P ≈β Q :⇔∃T.P −→∗
β T ←∗

β Q

Then we have

• P ≈β Q⇒P =β Q.

• P ≡α Q⇒P ≈β Q.

• P −→β Q⇒P ≈β Q.

• ≈β is symmetric.

• ≈β is transitive. (By Church Rosser).

• =β⊆≈β.

• =β and ≈β coincide.

Corollary 2.1.27 (Corollary 1.35.1) If

• P =β Q

• Q in β-normal form
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then
P −→∗

β Q .

Proof:
P −→∗

β T ←∗
β Q

for some T .
T ≡α Q .

P −→∗
β T −→∗

β Q .

Corollary 2.1.28 (Corollary 1.35.2) If P =β Q then

• either P and Q do not have β-normal forms or

• P and Q have the same β-normal forms.

Corollary 2.1.29 (Corollary 1.35.3) If P =β Q, P , Q are in normal form then
P ≡α Q.

Corollary 2.1.30 (Corollary 1.35.4) A term can be β-equal to at most one
β-normal form (up to ≡α).

Corollary 2.1.31 (Corollary 1.35.5) Assume

xM1 · · ·Mm =β yN1 · · ·Nn

Then x ≡ y, m = n, Mi =β Ni for i = 1, . . . ,m.

Proof: Let
xM1 · · ·Mm −→∗

β T ←∗
β yN1, . . . , Nn

Then T must be of the form xT1, . . . , Tm s. t. Mi −→∗
β Ti. Similarly

Nj −→∗
β Ti, y ≡ x, n = m and the assertion.

2.2 Combinatory logic (2)

2.2.1 Introduction (2A)

Definition 2.2.1 (2.1, 2.2, 2.3, 2.4., 2.5)

(a) The set of terms in combinatory logic, in short set of CL-terms is defined
as the set of λ-terms, but with two additional constants k and s and
without closure under λ-abstraction.

(b) If k, s are the only constants, the system is called pure, otherwise applied

(c) In this section capital roman letters denote CL-terms. The other conven-
tions are as in the last section.

(d) lgh(A), substitution is defined as for λ-terms.
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2.2.2 Weak reduction (2B)

Definition 2.2.2 (2.7, 2.8)

(a) Inductive definition of U −→w V (U weakly contracts to V ) for CL-terms
U , V :

• kxy −→w x.

• sxyz −→w xz(yz).

• If U −→w V then XU −→w XV , and UX −→w V X .

(b) −→∗
w is the reflexive and transitive closure of −→w. We say U weakly

reduces to V for U −→∗
w V .

(c) A weak normal form is a term U s. t. U contracts to no other term.

(d) If U weakly reduces to a weak normal form X , then X is called the weak
normal form of U .

This is a direct continuation of Handout 6.

Lemma 2.2.3 (2.12; Substitution lemma for weak reduction) Assume P −→∗
w

Q.

(a) FV(Q) ⊆ FV(P ).

(b) M [x := P ] −→∗
w M [x := Q].

(c) P [x := N ] −→∗
w Q[x := N ].

Proof: As Lemma 2.1.14 (1.28).

Theorem 2.2.4 (2.13, Church-Rosser theorem for weak reduction)
If P −→w M , P −→w N , then there exists T such that M −→∗

w T , N −→∗
w T .

Proof: An easy adaption of Takahashi’s proof. Left as an exercise.

2.2.3 Definition of λ-abstraction in combinatory logic (2C)

As in HAω we can now introduce λ-terms:

Definition 2.2.5 (a) For CL-terms M and variables x we define λ∗x.M as
follows:

• Case: x 6∈ FV(M). λ∗x.M := k M .

• Case M ≡ N x, x 6∈ FV(N). λ∗x.M := N .

• Otherwise

– Subcase M = x.
λ∗x.M := s k k .
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– Subcase M = P Q.

λ∗x.M := s (λ∗x.P ) (λ∗x.Q) .

(b) λ∗x1, . . . , xn.t := λ∗x1.λ
∗x2. . . . λ

∗xn.t.
λ∗~x.t := λ∗x1, . . . , xn.t, if ~x = x1, . . . , xn.

Theorem 2.2.6 (2.15) (λ∗x.M)N −→∗
w M [x := N ].

Proof:

By Lemma 2.2.3 (c) it suffices to prove:

(λ∗x.M) x −→∗
w M .

Induction on lgh(M).

Case: x 6∈ FV(M).

(λ∗x.M) x ≡ k M x −→w M .

Case M ≡ N x, x 6∈ FV(N).

(λ∗x.M) x ≡ N x ≡M .

Case Otherwise.

Subcase M ≡ x.

(λ∗x.x) x ≡ s k k x −→w (k x) (k x) −→w x

Subcase M ≡ P Q.

(λ∗x.M) x ≡ s (λ∗x.P ) (λ∗x.Q) x
−→w ((λ∗x.P ) x) ((λ∗x.Q) x)
−→∗

w P Q ≡M .

Lemma 2.2.7 (2.21; Substitution and abstraction lemma)

(a) FV(λ∗M) = FV(M) \ {x}.

(b) If y 6∈ FV(M), then

λ∗x.M ≡ λ∗y.(M [x := y])

(c) If y 6∈ FV(x N), then

(λ∗y.M)[x := N ] ≡ λ∗y.(M [x := N ])

Proof: Induction on M .
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2.2.4 Weak equality (2D)

Definition 2.2.8 (2.22) Let =w be the symmetric and transitive closure of
−→∗

w.
We say P is weakly equal or weakly convertible to Q if P =w Q.
It follows immediately that =w is reflexive as well.

Lemma 2.2.9 (1.34, Substitution lemma for weak equality).
Assume P =w Q.

(a) M [x := P ] =w M [x := Q].

(b) P [x := N ] =w Q[x := N ].

Theorem 2.2.10 (2.24; Church-Rosser theorem for weak equality)
If

P =w Q

then there exists T s. t.
P −→∗

w T ←∗
w Q

Proof: As for Theorem 2.1.26(1.35).

Corollary 2.2.11 (Corollary 2.24.1 - 5)

(a) If P =w Q and Q is in weak normal form then P −→∗
w Q .

(b) If P =w Q then

• either P and Q do not have weak normal forms or

• P and Q have the same weak normal forms.

(c) If P , Q are distinct weak normal forms, then P 6=w Q. In particular
s 6=w k, =w is nontrivial.

(d) If P =w Q, P , Q are in normal form, then P ≡ Q.

(e) A term can be weakly equal to at most one weak normal form.

(f) Assume
xM1 · · ·Mm =w yN1 · · ·Nn

Then x ≡ y, m = n, Mi =w Ni for
i = 1, . . . ,m.

Remark 2.2.12 (Warning, 2.25) It seems that combinatory logic and λ-calculus
are exactly the same. But there is one difference: In λ-calculus we have the so
called ξ-rule:

M −→β N⇒λx.M −→β λx.N ,

which can be weakened to

M =β N⇒λx.M =β λx.N .
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However in general in combinatory logic we do not have

M =w N⇒λ∗x.M =w λ∗x.N .

Counterexample
M := s x y z N := (x z) (y z)

We have

M =w N
λ∗x.M ≡ λ∗x.(s x y z)

≡ s (λ∗x.s x y) (λ∗x.z)
≡ s (s (λ∗x.s x) (λ∗x.y)) (k z)
≡ s (s s (k y)) (k z) ,

λ∗x.N ≡ λ∗x.(x z) (y z)
≡ s (λ∗x.x z) (λ∗x.y z)
≡ s (s (λ∗x.x) (λ∗x.z)) (k (y z))
≡ s (s (s k k) (k z)) (k (y z))

λ∗x.M and λ∗x.N are in normal form and different, therefore

λ∗x.M 6=w λ∗x.N

2.3 The fixed point and quasi-leftmost-reduction
theorem (3B, 3D)

2.3.1 Introduction (3A)

‘

Notation 2.3.1 (3.1., 3.2.)

(a) This section works both for λ-calculus and CL. The notation used in this
section should be read in λ-calculus and in CL as follows

Notation Interpretation for λ Interpretation for CL
Term λ-term CL-term
X ≡ Y X ≡α Y X, Y are identical
X −→β,w Y X −→β Y X −→w Y
X −→∗

β,w Y X −→∗
β Y X −→∗

w Y

X =β,w Y X =β Y X =w Y
λx.Y λx.Y λ∗x.Y
Combinator Closed Term not Term that has

containing as atoms only
constants k and s

s λx, y, z.x z (y z) s
k λx, y.x k
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(b)

I := λx.x (in CL ≡ s k k)
B := λx, y, z.x (y z) (in CL ≡ s (k s) k)

W := λx, y.(x y) y (in CL ≡ s s (k I))

2.3.2 The fixed-point theorem (3B)

Definition 2.3.2 (3.4) We define two fixed point combinators (there are oth-
ers):

(a) YCurry := λx.V V with V := λy.x (y y)

(b) YTuring := Z Z with Z := λz, x.x (z z x).

(c) If not denoted differently Y will in the following be YTuring (if (a) of the
next theorem suffices, one can use YCurry as well).

Theorem 2.3.3 (a) YCurry x =β,w x (YCurry x)

(b) YTuring x −→∗
β,w x (YTuring x)

Proof:

Only (b): Let Y := YTuring.

Y x ≡ Z Z x ≡ (λz, x.x (z z x)) Z x
−→∗

β,w x (Z Z x)
≡ x (Y x)

Theorem 2.3.4 (3.3.1, 3.3.2)

(a) In both λ and CL, for any term Z (possibly containing the variables
x, y1, . . . , yn free) and n ≥ 0 there is a term X s. t.

Xy1 · · · yn −→∗
β,w Z[x := X ] .

(b) In both λ and CL, for any k > 0, n > 0, terms Z0, . . . , Zk−1 (possibly
containing the variables x0, . . . , xk−1, , y1, . . . , yn free) there exists terms
Xi s. t.

Xi y1 · · · yn −→∗
β,w Zi[x0 := X0, . . . , xk−1 := Xk−1]

(i = 0, . . . , k − 1) .

(c) In both λ and CL, for any terms X,Y there exists P , Q s. t.

P −→β,w X P Q Q =β,w Y P Q
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Proof:
(a):

X := Y (λx, y1, . . . , yn.Z) .

X y1 · · · yn ≡ Y (λx, y1, . . . , yn.Z)y1 · · · yn

−→∗
β,w (λx, y1, . . . , yn.Z) X y1, . . . , yn

−→∗
β,w Z[x := X ]

(b) We prove first the following Lemma:

Lemma 2.3.5 (2.26)

(a) There exists a pairing combinator p and corresponding projections pi (i =
0, 1) s. t.

pi (p x0 x1) −→∗
β,w xi (i = 0, 1) .

(b) For every n ≥ 1 there exists sequence combinators pn and corresponding
projections pn

i (i = 0, . . . , n− 1) s. t.

pi (pn
i x0 x1 · · ·xn) −→∗

β,w xi (i = 0, , . . . , n− 1) .

Proof:
(a):

p := λx, y, z.z x y
pi := λu.u(λx0, x1.xi)

Then

pi (p x0 x1) ≡ pi((λx, y, z.z x y) x0 x1)
−→∗

β,w pi(λz.z x0 x1)
≡ (λu.u (λx0, x1.xi)) (λz.z x0 x1)

−→∗
β,w (λz.z x0 x1) (λx0, x1.xi)

−→∗
β,w (λx0, x1.xi) x0 x1

−→∗
β,w xi

(b): Induction on n:
n = 1: p1 := p1

0 := I.
n −→ n+ 1:

pn+1 := λx1, . . . , xn+1.p (pn x1, . . . , xn) xn+1

pn+1
i := λu.pn

i (p0 u) (i = 0, . . . , n− 1)
pn+1

n := p1

Proof of part (b) of Theorem 2.3.4:
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Let

~y := y1, . . . , yk ,
Z ′i := Zi[x0 := λ~y.pk

0 (x ~y), . . . , xk−1 := λ~y.pk
k−1 (x ~y)]

Z := pk Z ′0 · · ·Z ′k−1

X chosen according to 2.3.4 (a) s. t.
X ~y −→β,w Z[x := X ] ,
Xi := λ~y.pk

i (X ~y)
then

Xi ~y ≡ pk
i (X ~y)

−→∗
β,w pk

i (Z[x := X ])

−→∗
β,w Z ′i[x := X ]

≡ Zi[x0 := λ~y.pk
0 (X ~y), . . . , xk−1 := λ~y.pk

k−1 (X ~y)]
≡ Zi[x0 := X0, . . . , xk−1 := Xk−1]

Proof of part (c) of Theorem 2.3.4:
Let in 2.3.4 (b) n := k := 2, Zi := yi (x0 y1 y2) (x1 y1 y2).
Let X1, X2 s. t.

Xi y1 y2 −→β,w Zi[x0 := X0, x1 := X1]

Let P := X0 X Y , Q := X1 X Y .
Then

P −→β,w Z0[x0 := X, x1 := Y, y1 := X, y2 := Y ]
≡ X (X0 X Y ) (X1 X Y )
≡ X P Q

similarly
Q −→βw Y P Q

2.3.3 The quasi-leftmost-reduction theorem (3D)

The Quasi-leftmost reduction theorem will not be shown in this lecture.
The only proof we could find is quite complicated, but we assume that
using the new techniques available a simpler proof can be given.

Definition 2.3.6 (approx. 3.17, 3.18)

(a) We define N −→l,β M and N −→l,w M , where we write N −→l,β,w M for
either N −→l,β M (in the case of λ-calculus) or N −→l,w M (in the case
of combinatory logic) and pronounce this expression as N leftmost weakly
reduces/β-reduces to M , inductively by:

• k N M −→l,w N ;

• s N M P −→l,w (N P ) (M P );

• (λx.M) N −→l,β M [x := N ];
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• If M −→l,β N , then λx.M −→l,β λx.N .

• If M −→l,β,w N , M not of the form λx.P , k P , s P Q, then
M R −→l,β,w N R.

• If M −→l,β,w N , R in normal form and not of the form λx.P , k P ,
s P Q, then R M −→l,β,w R N .

So N −→l,β,w M means, that the leftmost maximal redex in N is reduced
in the reduction of N to M .

(b) N −→+
l,β,w M :⇔∃N ′N −→∗

β,w N ′ −→l,β,w M .

(c) A quasi-leftmost reduction of a term X is

• either a finite sequence (X1, . . . , Xn) s. t.

X ≡ X1 −→+
l,β,w X2 −→+

l,β,w · · · −→+
l,β,w Xn

and Xn is normal or

• an infinite sequence X1, X2 · · · s. t.

X ≡ X1 −→+
l,β,w X2 −→+

l,β,w · · ·

Theorem 2.3.7 (Quasi-leftmost-reduction theorem 3.19, 3.19.1)

(a) In both λ-calculus and combinatory logic, if X has a normal form X∗,
then every quasi-leftmost reduction of X is finite and terminates at X∗.

(b) In both λ-calculus and combinatory logic, X has no normal form iff some
quasi-leftmost reduction of X is infinite.

Proof:
(b) follows directly by (a). (a) will not be proved.

2.4 Representing the recursive functions (4)

Notation 2.4.1 (a) The notation as in 2.3.1 apply to this section as well.

(b) i, j, k,m, n denote natural numbers.

Definition 2.4.2 (a) X0 Y := Y , Xn+1 Y := X(Xn Y )
(or Xn Y = X(X(· · · (X︸ ︷︷ ︸

n times

Y ) · · · )

(b) A partial function n-ary function on the natural numbers is a function
Nn −→ N ∪ {⊥}, where ⊥ is a symbol for undefined. Abbreviations like
f(~n) ↓, f(n) ↑, f(n) ' m are as usual. For terms t we define, whether
it is defined, and for two terms s, t, whether s ' t, as usual (where for
being defined we require that all sub-terms are defined, even if they are
not needed in the computation of the whole term).
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(c) If not defined differently let in the following
〈X,Y 〉 := p X Y , X0 := p0 x, X1 := p1 x.

Definition 2.4.3 (Church numerals, 4.2)

Nn := n := λx, y.xn y
(in Combinatory logic ≡ (s B)n (k I)) .

n is called the nth Church numeral or the Church numeral representing n

Therefore we have
n F X −→β,w Fn X .

There are other representations of the natural numbers.
Proof of the above equality by induction on n:

0 ≡ λx, y.y
≡ λx.I
≡ k I

n+ 1 ≡ λx, y.x (xn y)
≡ λx.s (k x) (λy.xn y)
≡ s (λx.s (k x)) (λx, y.xn y)
≡ s (s (k s) k) n
≡ (s B) (s B)n (k I)
≡ (s B)n+1 (k I)

Definition 2.4.4 (4.4)

(a) Let f be an n-ary partial function. We say a λ-term X λ-defines or a CL-
term combinatorially defines (or if talking about λ- or CL-terms a term
defines) f iff
for all m1, . . . ,mn it holds

• f(m1, . . . ,mn) ↓ iff X m1 · · ·mn has a normal form;

• If f(m1, . . . ,mn) ↓ then

X m1 · · ·mn =β,w f(m1, . . . ,mn) .

Lemma 2.4.5 (a) A term defines at most one function.

(b) If a λ-term or CL-term defines f , then f is partial recursive.

Proof:
(a): The Church numerals are in normal form and pairwise not α-equivalent.
Since all normal forms of a term are (α)-equivalent and every term in nor-
mal form that is w/β-equivalent to a term is a normal form of it, it follows
that the function is uniquely defined.
(b) Let X∗,n be defined by

X∗,0 := X X∗,n+1 := (X∗,n)∗
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From Lemma 2.1.17 (h) and (i) it follows that if M is a normal form of
a term N , then N ≡ M∗,k for some k and for all l > k M∗,l = M∗,k.
M∗,k is primitive recursive in (a code for the) term M and k. Further we
can determine from a term, which is a α-equivalent to a Church numeral
the number it represents in a primitive recursive way (for instance since
lgh(n) = n · a+ b for some global constant a, b) and of course a (code for
a) n is primitive recursive in n. Therefore if N defines f we can compute
f as follows: For input m1, . . . ,mn, let U := Nm1 · · ·mn. Evaluate U∗,k

until for some k U∗,k ≡ U∗,k+1 (which is primitive recursively decidable).
If this doesn’t happen, f(m1, . . . ,mn) is undefined and the procedure
doesn’t terminate. If there is some k, then U ∗,k is α-equivalent to a
Church numeral n. Determine n which is the result f(n1, . . . , nk).
The above procedure can now be written as a partial recursive function,
which determines f(n1, . . . , nk) on input n1, . . . , nk.

Next steps:We will show that every recursive function can be defined by
a λ-term and a CL-term. We will first show that all primitive recursive
functions can be defined in such a way.

Lemma 2.4.6 (a) The successor function can be defined by Ŝ := λu, x, y.x (u x y)
(in CL this is ≡ s B).

Ŝ is a combinator in normal form.

(b) 0 is defined by 0 (or k I), which is a combinator in normal form.

(c) The function f(n1, . . . , nk) = ni is defined by λx1, . . . , xk.xi, which is a
combinator in normal form.

(d) If the n-ary functions gi are defined by terms ĝi, the k-ary function h

defined by ĥ and f(~m) = h(g1(~m), . . . , gm(~m)), then f is defined by f̂ :=

λ~x.ĥ(ĝ1 ~x) · · · (ĝm ~x).

If ĥ, ĝi are combinators in normal form, so is f̂ .

(e) There is a combinator R s. t.

R X Y 0 =β,w X ,
R X Y k + 1 =β,w Y k (R X Y k) .

R can be chosen as a combinator in normal form.

(f) Every primitive recursive function can be defined by a combinator f̂ in
normal form.

Proof:
(a) In λ-calculus

Ŝ n −→∗
β λx, y.x (n x y) −→∗

β λx, y.x (xn y) ≡ S(n)

In CL
Ŝ n ≡ (s B) (s B)n (k I) ≡ (s B)S(n) .
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(b) - (d) Trivial.
(e) First step:
For every term Y there exists a term ZY s. t.

∀n ∈ N.ZY 〈n, x〉 =β,w 〈n+ 1, (Y n x)〉 :

Define
ZY := λx.〈Ŝ (x0), Y (x0) (x1)〉 .

By 〈x0, x1〉i =β,w xi it follows the assertion.
Second Step:
Define

UX,Y := λx.x ZY 〈0, X〉
Then

UX,Y 0 =β,w 〈0, X〉
UX,Y n+ 1 =β,w 〈n, Y n ((UX,Y n)1)〉

The first assertion is clear, the second assertion follows by induction on n:

UX,Y 1 =β,w ZY 〈0, X〉
=β,w 〈1, Y 0 X〉
=β,w 〈1, Y 0 ((UX,Y 0)1)〉

UX,Y n+ 2 =β,w Zn+2
Y 〈0, X〉

=β,w ZY (Zn+1
Y 〈0, X〉)

=β,w ZY (UX,Y n+ 1)
=β,w ZY 〈n+ 1, Y n X〉
=β,w ZY 〈n+ 1, (UX,Y (n+ 1)1)〉
=β,w 〈n+ 2, Y n+ 1 ((UX,Y n+ 1)1)〉

Third Step:

R := λx, y, u.(Ux,y u)1

Then

R X Y 0 =β,w X
R X Y n+ 1 =β,w (UX,Y n+ 1)1

= 〈n+ 1, Y n ((UX,Y n)1)〉1
= 〈n+ 1, Y n (R X Y n)〉1
= Y n (R X Y n)

R is not in normal form, but one sees immediately that he reduces to a
normal form.
(f): All cases except of primitive recursion follow directly by (a) - (e).
Case primitive recursion: Assume

f(~n, 0) = g(~n) f(~n,m+ 1) = h(~n,m, f(~n,m))
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Let ĝ, ĥ terms (in normal form) defining g, h.

f̂ := λ~x.R (ĝ ~x) (λu, v.ĥ ~x u v)

By induction on m follows

f̂(n1, . . . , nm,m) =β,w f(n1, . . . , nm,m) .

Now we will show that all partial recursive functions can be defined by
a normal combinator.

Lemma 2.4.7 (a) There exists a combinator E in normal form s. t.

E X Y 0 =β,w X ,
E X Y n+ 1 =β,w Y .

We write if x then y else z for E y z x.

(b) There exists a combinator µ̂ in normal form s. t.

µ̂ X Y =β,w Y
if X Y =β,w 0 ,

µ̂ X Y =β,w P X (Ŝ Y )
if X Y =β,w n+ 1 .

Especially we have therefore, if f̂ represents the unary function f ,

µy ≥ n(f(y) = 0) ↓ ⇒µ̂ f̂ n =β,w µy ≥ n(f(y) = 0) .

Proof:
(a) E := λx, y, z.z (k y) x.

E X Y 0 ≡ 0 (k Y ) X
=β,w (λx, y.y) (k Y ) X ,
=β,w X ,

E X Y n+ 1 ≡ n+ 1 (k Y ) X
=β,w (k Y )n+1 X
=β,w Y .

(b) Define

TX := λy. if y then (λu, v.v) else λu, v.u (X (Ŝ v)) u (Ŝ v)

Then we get

TX (X Y ) TX Y =β,w (λu, v.v) TX Y
=β,w Y

(if X Y =β,w 0) ,

TX (X Y ) TX Y =β,w (λu, v.u (X (Ŝ v)) u (Ŝ v)) TX Y

=β,w TX (X (Ŝ Y )) TX (Ŝ Y )
(if X Y =β,w n+ 1) .
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Let
µ̂ := λx, y.Tx (x y) Tx y

Then µ̂ fulfills the equations of the assertion.

Next step: We will show that every total recursive function can be de-
fined by a term:

Lemma 2.4.8 (Kleene, 4.15). Every recursive total function f can be defined

by a combinator f̂ .

Note that f̂ is an overloaded notation, since we introduced it as a term
representing a primitive recursive function and a term defining a recursive
function (and will define it as a term defining a partial-recursive function)
and these definitions do not coincide. However this will not cause problems
since later we need just one term defining a function, independently of how
it is exactly defined.

Proof:
By the Kleene normal form, f can be written as (with ~m := m1, . . . ,mn)

f(~m) = h(µk.g(~m, k) = 0) ,

where h and g are primitive recursive.
Let in the following ~x = x1, . . . , xn, ~X := X1, . . . , Xn.
Let

N :≡ λ~x, y.µ̂ (ĝ ~x) y

Then

N ~X Y =β,w µ̂ (ĝ ~X) Y

=β,w

{
Y if ĝ ~X Y =β,w 0 ,

N ~X (Ŝ Y ) if ĝ ~X Y =β,w n+ 1 .

Now
f̂ := λ~x.h(N ~x 0) .

Remark: The book claims that f̂ is in normal form, without giving a
proof, but by saying that the proof is boring. The result is probably
true here, but only because f is total and requires not (as said in the
book) a boring but quite a sophisticated proof. Probably one needs to
show that the terms defining the primitive recursive functions can be
typed in the system F (this type system is not treated in this course),

in the sense that if f is n-ary then f̂ is of type natn −→ nat, where
nat = ∀α.(α −→ α) −→ α −→ α. Now one needs to show that N ~x 0 can
be assigned the type nat. Whether this is the case and exactly in which
sense I don’t know, and it can only work, if f is total, since otherwise for
suitable ~n N ~n 0 does not normalize. If it can be done then f̂ can be
typed as well and is therefore normalizing, so such an argument does not
work for the term defined in the proof of the next theorem.
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Theorem 2.4.9 In both λ-calculus and combinatory logic every partial-recursive
function f can be defined by a combinator f in normal form.

From the proof of Lemma 2.4.8 we obtain as well for partial recursive
functions f a term f̂ s. t. if f(~m) is defined, then

f̂ ~m =β,w f(~m)

However, from this it does not follow that if f(~m) is undefined, f̂ ~m does
not normalize. We will modify the definition given there in order to obtain
a term which has the second property as well.

Proof:
As before write f as

f(~m) ' h(µk.g(~m, k) = 0) ,

where h and g are primitive recursive.
Let F be the term we obtained in 2.4.8 as f̂ ,

F :≡ λ~x.ĥ(N ~x 0) .

Define
f̂ := λ~x.((µ̂ (ĝ ~x) 0) I (F ~x) .

Assume ~m s. t. f(~m) is defined. Therefore there exists minimal j s. t.
g(~m, j) = 0, and f(~m) = h(j). Then

f̂ ~m =β,w j I (F ~m)

=β,w Ij(F ~m)
=β,w F ~m
=β,w f(~m)

Assume now f(~m) ↑. Let pk := g(~m, k)− 1. Since g(~m, k) > 0, g(~m, k) =
pk + 1. Define

X := ĝ ~m, G := F ~m

∀k.X k =β,w pk + 1

by Church-Rosser and since the Church-numerals are in normal form it
follows

∀k.X k −→β,w pk + 1

We show f̂ ~m has no normal form by giving an infinite quasi-left-most
reduction and using Theorem 2.3.7 (b).

f̂ ~m −→∗
β,w (µ̂ X 0) I G

−→∗
β,w (TX (X 0) TX 0) I G

−→∗
β,w (TX (p0 + 1) TX 0) I G

−→∗
β,w (µ̂ X 1) I G

−→∗
β,w (TX (X 1) TX 1) I G
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−→∗
β,w (TX (p1 + 1) TX 1) I G

−→∗
β,w · · ·
Xi −→ pi + 1

must contain one left-most-reduction (otherwise the left most redex in
X remains unchanged contradicting that pi + 1 is in normal form, and
therefore

(TX (X 1) TX 1) I G −→∗
β,w (TX (p1 + 1) TX 1) I G

must include one left-most reduction. Therefore the above sequence is an
infinite quasi-left-most reduction.
Remark f is not normalizing in λ-calculus. Let g(~m) = 1. ĝ~x −→β,w 1

and with almost the same sequence as in the proof (replace f̂ ~m by f̂ and

everywhere ~m by ~x) we get an infinite quasi-leftmost-reduction of f̂ (but
not in combinatory logic, because the reduction will be “after the λ”).

2.5 The undecidablity theorem (5)

Notation 2.5.1 (5.1)

(a) Relative to earlier versions of this scriptum we have made the following
changes:

• A term representing a (primitive recursive, recursive or partial recur-

sive) function f will now be denoted by f̂ .

• Therefore the standard term representing the successor function is
therefore denoted by Ŝ.

• The function N 3 n 7→ n will now be denoted by N (and the term

representing it therefore N̂).

• We write µ̂ instead of P since

µy ≥ n(f(y) = 0) ↓ ⇒µ̂ f̂ n =β,w µy ≥ n(f(y) = 0) .

(b) Again the notation as in 2.3.1 apply to this section as well.

(c) We assume some coding pMq of (λ- or CL-) terms s. t.

• there is a recursive (total) function ◦ s. t. ◦(pMq, pNq) = pM Nq

and

• the function N : N 3 n 7→ pnq is recursive.

(Of course both functions can be chosen primitive recursive).

(d) Let for A a set of terms

pAq := {pMq |M ∈ A} .
Note that this is the image of the function λx.pxq to the set A, therefore
it is a set and not a natural number.
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Remark 2.5.2 In the book pXq is the Church numeral corresponding to the
Gödelnumber of X. We write it as pXq.

We can with almost no effort obtain the following undecidability theorem,
which will then be generalized in Theorem 2.5.5.

Theorem 2.5.3 (a) Both =β and =w are undecidable.

(b) It is undecidable whether a term has a normal form.

Proof:
(a) Let the unary partial recursive function f be defined by

f(e) :'
{

0 if {e}(e) ↓,
⊥ otherwise.

Let f̂ be a term defining f . Then

f̂ e =β,w 0⇔{e}(e) ↓ ,

so, if =β,w were decidable, one could decide for e ∈ N, whether {e}(e) ↓,
which is undecidable.
(b): For the same f̂

f̂ e has a normal form⇔{e}(e) ↓ .

Definition 2.5.4 (5.4, 5.5)

(a) Assume A,B ⊆ N. A, B are called recursively separable iff there is a
recursive set C s. t. A ⊆ C, B ∩ C = ∅.
A, B are recursively inseparable, iff they are not recursively separable.

(b) A set of A of terms is closed under equality iff for all terms X,Y

(X ∈ A ∧X =β,w Y )⇒Y ∈ A .

The following theorem is a variant of the generalization of Rice’s theorem1,
which states that if A, B are disjoint nontrivial sets of recursive functions
then the sets {e | {e} ∈ A} and {e | {e} ∈ B} are recursively inseparable.
The proof is almost identical to the proof of that variant, which is more
or less identical to the proof of the standard version of Rice’s theorem.

Theorem 2.5.5 (5.6, Scott-Curry undecidability theorem)
For both λ-terms and β-equality and CL-terms and weak equality it holds:
Assume A, B are sets of terms, s. t.

1We think that this variant is called as well Rice’s theorem, although we could not find

this version in text books.



56 CHAPTER 2. λ-CALCULUS AND COMBINATORY LOGIC

• A, B are closed under equality,

• A ∩ B = ∅,

• A 6= ∅ 6= B,

then
pAq, pBq are recursively inseparable .

Proof:
Assume pAq, pBq can be recursively separated. Let

• pAq ⊆ C,

• C ∩ pBq = ∅,

• C a recursive subset of N,

• f(x) =

{
1 x ∈ C,
0 x 6∈ C,

• f̂ define f .

Therefore we have

X ∈ A ⇒ f̂ pXq =β,w 1

X ∈ B ⇒ f̂ pXq =β,w 0

Let ◦̂, N̂ define the functions ◦, N, i.e.

◦̂ pMq pNq =β,w pM Nq

N̂ n =β,w pnq

Let A ∈ A, B ∈ B.
We will define a term J s. t.

J =β,wif (f̂ pJq) then A else B .

Then we have

f̂ pJq =β,w 1 ⇒ J =β,w B ⇒ J ∈ B
⇒ f̂ pJq =β,w 0

f̂ pJq =β,w 0 ⇒ J =β,w A ⇒ J ∈ A
⇒ f̂ pJq =β,w 1

Since f(pJq) ∈ {0, 1},

f̂ pJq =β,w 0 ∨ f̂ pJq =β,w 1 ,
0 =β,w 1
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contradicting that 0 and 1 are in normal form and not ≡.
We have to define J . We would like to use the fixed point theorem 2.3.4
(a), but it cannot be applied, since the term on the right side depends on
pJq, not on J . Instead we prove the following fixed point lemma, from
which with

X := λy. if (f̂ y) then A else B

the existence of J follows.

Lemma 2.5.6 (Barendregt, 5.9.(c))
For every (λ- or CL-)term X there exists a term J s. t.

J =β,w X pJq .

Proof:
Define

M := λy.X (◦̂ y (N̂ y))
J := M pMq

Then

J =β,w X (◦̂ pMq (N̂ pMq))

=β,w X (◦̂ pMq ppMqq)

=β,w X pM pMqq

≡ X pJq .

Corollary 2.5.7 (5.6.1)
If A is a set of λ- or CL-terms closed under =β,w, and neither A nor its com-
plement are nonempty, then A is non-recursive

Proof: Let B be the complement of A.

Theorem 2.5.3 follows from Corollary 2.5.7 now as a corollary:

• If =β,w were decidable, then for a term N the set A := {M | M =β,w

N} would be a non-trivial recursive set closed under =β,w contradicting
Corollary 2.5.7.

• The set of terms with normal form is a non-trivial set closed under =β,w,
therefore non-recursive.

2.6 The formal theories λβ and CLw (6A)

2.6.1 Definition of the theories (6A)

We will now introduce formal theories, which derive the relations −→β ,
−→w, =β, =w. These more abstract notions will allow us to define more
easily extensions of these notions by e.g. extensional concepts.
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Definition 2.6.1 (6.1)

(a) A formal theory I is a pair (F ,R) s. t.

• F is a set, the elements of it are called formulas,

• R is a set of pairs (Γ;A), where Γ is a set of formulas (i.e. Γ ⊆ F)
and A is a formula i.e. A ∈ F)

As usual

• Γ,∆ denote in the following (possibly infinite) subsets of F ,

• Γ, A := Γ ∪ {A},
• A1, . . . , An := {A1, . . . , An}.

We will denote a rule (A1, , . . . , An;A) by

A1 · · · An

A

(b) A rule (∅;F ) of a formal theory is called an axiom, and will be denoted
by F .
We usually define theories by defining the set of formulas, the set of axioms
and then the set of rules which are not axioms.

(c) If I = (F ,R) we define for F ∈ F , ∆ ⊆ F inductively

I,∆`F or shorter ∆`IF or sometimes even shorter ∆`F

by:

• F ∈ ∆⇒∆`IF .

• If

– (Γ;A) ∈ R,

– for all G ∈ Γ we have ∆`IG,

then ∆`IA.

B if a theorem of I :⇔I`B :⇔`IB :⇔∅`IB .

Definition 2.6.2 (6.2)
The formal theory of β-equality in short λβ is defined as follows:

• Formulas:
Equations M = N for λ-terms M , N .

• Axioms: For all variables x, y and λ-terms M , N

(α) λx.M = λy.(M [x := y]) if y 6∈ FV(M)
(β) (λx.M) N = M [x := N ]
(ρ) M = M
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• Rules:
(µ) M = M ′

N M = N M ′

(τ) M = N N = P

M = P
(ν) M = M ′

M N = M ′ N

(σ) M = N

N = M
(ξ) M = M ′

λx.M = λx.M ′

We write
λβ`M = N

for M = N provable in the above theory.

(The names (α), (β) , . . . are from Curry and Feys, [CF58]).

Definition 2.6.3 (6.3)
The formal theory of β-reduction in short λβ (from the context it will be clear
whether Definition 2.6.2 or 2.6.3 is meant) is defined as before, but with =
replaced by −→ and omitting the rule (σ). For convenience we spell it out:

• Formulas:
M −→ N , where M , N are λ-terms .

• Axioms: For all variables x, y and λ-terms M , N

(α) λx.M −→ λy.(M [x :−→ y]) if y 6∈ FV(M)
(β) (λx.M) N −→M [x :−→ N ]
(ρ) M −→M

• Rules:

(µ) M −→M ′

N M −→ N M ′

(τ) M −→ N N −→ P

M −→ P
(ν) M −→M ′

M N −→M ′ N

(ξ) M −→M ′

λx.M −→ λx.M ′

We write
λβ`M −→ N

for M −→ N provable in the above theory.

Lemma 2.6.4 (6.4)

(a) M −→∗
β N⇔λβ`M −→ N .

(b) M =β N⇔λβ`M = N .

Proof: Straightforward

Definition 2.6.5 (6.5)
The formal theory of weak equality in short CLw is defined as follows:



60 CHAPTER 2. λ-CALCULUS AND COMBINATORY LOGIC

• Formulas:
Equations M = N for CL-terms M , N .

• Axioms: For all CL-terms M , N

(k) k M N = M.
(s) s M N P = M P (N P ).
(ρ) M = M.

• Rules:
(µ) M = M ′

N M = N M ′

(τ) M = N N = P

M = P
(ν) M = M ′

M N = M ′ N

(σ) M = N

N = M

We write
CLw`M = N

for M = N provable in the above theory.

Definition 2.6.6 (6.6)
The formal theory of weak reduction in short CLw (again from the context it
will be clear whether Definition 2.6.5 or 2.6.6 is meant) is defined as before, but
with = replaced by −→ and omitting the rule (σ). For convenience we spell it
out:

• Formulas:
M −→ N , where M , N are λ-terms .

• Axioms: For all CL-terms M , N

(k) k M N −→M.
(s) s M N P −→M P (N P ).
(ρ) M −→M.

• Rules:

(µ) M −→M ′

N M −→ N M ′

(τ) M −→ N N −→ P

M −→ P
(ν) M −→M ′

M N −→M ′ N

(σ) M −→ N

N −→M

We write
CLw`M −→ N

for M −→ N provable in the above theory.

Lemma 2.6.7 (6.7)

(a) M −→∗
w N⇔CLw`M −→ N .
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(b) M =w N⇔CLw`M = N .

Proof: Straightforward

Remark 2.6.8 (6.8)
By the Church-Rosser theorem and Lemmata 2.6.4 and 2.6.7 it follows that λβ
and CLw are consistent, i.e. not all formulas are provable.

2.6.2 First order theories and derivable rules (6B)

Definition 2.6.9 (6.9)

(a) A first order theory is a pair (L,R), where

• L is a language, i.e. a collection of n-ary function and relation sym-
bols;
the set of terms and formulas is then defined as usual

(w.r.t. the usual connectives of classical predicate calculus; = is
always included unless mentioned)

• R is a set of rules given as before w.r.t. the set of formulas just
defined

Axioms are then defined as before, and derivability in this theory means
derivability in the formal theory given by:

• Formulas are the formulas in the language L.

• Rules are

– The rules in R.

– The rules of classical predicate calculus with equality axioms are
rules of the formal theory.

(b) We might change the underlying logic as well, where a logic consists of:

• A set of n-ary connectives

• A set of quantifiers.

• The set of formulas of a first order language L w.r.t the above con-
nectives and quantifiers is then defined as:

– Prime formulas of L in the usual sense are formulas.

– If A1, . . . , An are formulas, ◦ an n-ary connective, then ◦(A1, . . . , An)
is a formula

– If A is a formula, Q a quantifier, x a variable, then Qx.A is a
formula

• A set of rules w.r.t. the above set of formulas.

In this case a first order theory consists of:
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• A language L defined as before.

• A logic.

• Rules as before w.r.t. the set of formulas in L w.r.t. the language L.

The Formulas of a language L w.r.t. a logic are the formulas of L w.r.t.
the connectives and quantifiers of the logic.

Derivability etc. is now the straightforward generalization of part (a) of
this definition.

There are lots of more generalizations possible (e.g. a sorted language,
more generalized quantifiers).

Definition 2.6.10 (6.11)
The theory CL+

w is the theory in classical predicate calculus given by:

• Language: Two constants k, s and one binary function symbol Ap.
We write (M N) instead of Ap(M,N), and identify terms with their
corresponding CL-terms.
No relation symbols (except of equality).

• Logic: Classical logic with equality axioms.

• Axioms:
∀x.y.(k x y = x)
∀x.y, z.(s x y z = x z (y z))
¬(s = k)

Lemma 2.6.11 (6.12)
CL+

w is a conservative extension of CLw, i.e. provable equations of CL+
w and

CLw coincide.

Proof:
One first verifies easily that every equation provable in CLw is provable
as well in CL+

w .
On the other hand, we can see that the set of open CL-terms with

Ap(N,M) := N M ,

k, s interpreted by themselves and equality defined as =w is a model M
of CL+

w .
Further, we have that for every term N of the language of CL+

w , N∗[ξ] is
the result of replacing xi by ξ(xi) and of replacing Ap(N,M) by N M .
Especially, if ξ(x) = x, N∗[ξ] is the CL-term we identifyN with. Therefore
we get for CL-terms N , M , with N ′, M ′ being the corresponding terms
in CL+

w ,
N ′∗[ξ] ≡ N, M ′∗[ξ] ≡M ,

and

CL+
w`N ′ = M ′
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⇒ M |= (N ′ = M ′)[ξ]
⇔ N ′∗[ξ] =w M ′∗[ξ]
⇔ N =w M
⇔ CLw`N = M .

Definition 2.6.12 (6.13)

(a) A rule

A1 · · · An

A

of a formal theory is derivable in a theory I, if

A1, . . . , An`IA .

(b) A rule

A1 · · · An

A

of a formal theory is admissible in a theory I, if

(`IA1 ∧ · · · `IAn)⇒`IA

Lemma 2.6.13 (6.14)

(a) A rule R of a formal theory is admissible iff adding of R to the theory
does not change the set of theorems.

(b) Derivable rules of a formal theory are admissible, but not vice-verca.

(c) If R is a derivable rule in a formal theory I, then R is derivable in any
extension of I obtained by adding new rules.

Definition 2.6.14 (6.15)
Let I, I ′ be formal theories with the same set of formulas.

(a) I, I ′ are theory-equivalent, iff every rule of I is admissible in I ′ and vice
verca.

(b) I, I ′ are rule-equivalent, iff every rule of I is derivable in I ′ and vice
verca.

Lemma 2.6.15 (6.16)
Two formal theories I, I ′ with the same set of formulas are theorem equivalent
iff they have the same set of theorems.

Proof: trivial
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Definition 2.6.16 (6.17)
If I is a formal theory and let some formulas be equations X = Y , X , Y terms
according to some definition (usually clear from the context). Then the equality
relation determined by I is called =I and defined by

X =I Y :⇔`IX = Y .

Lemma 2.6.17 (6.18)
If I, I ′ are formal theories with the same set of formulas and some equations
be defined as in the previous definition. If I, I ′ are theorem-equivalent, then
=I and =I′ coincide.

Proof: trivial.

2.7 Extensionality in λ-calculus (7)

2.7.1 Extensional equality

We usually treat equality as extensional: For two functions f , g

f = g⇔∀x.(f(x) = g(x)) .

In λβ, equality is not extensional but intensional.

f = g⇔f, g reduce to the same normal form .

For instance we have that y and λx.y x are extensional the same, but
intensional different (they are both already in normal form).

Notation 2.7.1 (7.1)
In this section, term means λ-term.

Definition 2.7.2 (7.1, 7.2)

(a) The following are possible additional rules, which can be added to λβ

(ext) M P = N P (for all terms P )

M = N
(ω) M P = N P (for all closed terms P )

M = N
(ζ) M x = N x

M = N

if x 6∈ FV(M N)

(η) λx.M x = M if x 6∈ FV(M)

Note that the first two rules have infinitely many premises.

(b) The following 4 formal theories are extensions of λβ by the following rules

λβ + (ext) add (ext);
λβω add (ω);
λβζ add (ζ);
λβη add (η);
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We will focus on (ext), (ζ), (η). (ext) is admissible in (ω) but the converse
does not hold See [HS86].

Theorem 2.7.3 (7.4).
λβ+ (ext), λβζ, λβη are rule-equivalent (therefore as well theorem-equivalent).

Proof:

• (ext) is trivially derivable in λβζ.

• (ζ) is derivable in λβη: If M x = N x, x 6∈ FV(M N), then

M = λx.M x = λx.N x = N .

• (η) is provable in λβ + (ext): (λx.M x)P = M P for all P , therefore
`λβ+(ext)λx.M x = M .

Definition 2.7.4 (7.5)
=βη is the equality relation determined by λβη:

M =βη N⇔`λβηM = N

2.7.2 λβη-reduction (7B)

Definition 2.7.5 (7.6. - 7.9)

(a) −→η is defined as−→β , but based on λx.M x −→M instead of (λx.M) N −→
M [x := N ]. −→∗

η, −→η,l etc. are defined similarly

(b) −→∗
βη is the transitive closure of −→β ∪ −→η ∪ ≡α. Similarly we define

−→lβη.

(c) βη-normal forms are defined as β-normal forms, but w.r.t. −→∗
β,η.

(d) The formal theory λβη of βη-reduction is the extension of the formal
theory of β-reduction by

(η) λx.M x −→M if x 6∈ FV(M N)

Lemma 2.7.6
P −→∗

β,η Q⇔λβη`P −→ Q .

Lemma 2.7.7 (7.11; Substitution lemma for βη-reduction) Assume P −→∗
βη

Q.

(a) FV(Q) ⊆ FV(P ).

(b) M [x := P ] −→∗
βη M [x := Q].

(c) P [x := N ] −→∗
βη Q[x := N ].
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Proof: As usual, in (c) note, that If P ≡ λy.Q y, y 6∈ FV(Q), then

(λy.(Q y))[x := N ] −→β,η Q[x := N ] .

Theorem 2.7.8 (7.12, Church-Rosser theorem for βη-reduction)
If P −→βη M , P −→βη N , then there exists T such that M −→∗

βη T , N −→∗
βη

T .

Proof: Extend Takahashis proof. Note that, whether we reduce (λx.N x) M
by an η-contraction or a β-reduction we obtain the same result. This is
reflected by the precise definition of the extension of the definition of M ∗.

2.7.3 The postponent theorem (7.13 - 7.14)

We will prove the following two theorems.

Theorem 2.7.9 (7.13) A λ-term has a βη-normal form iff it has a β-normal
form.

Theorem 2.7.10 (Postponent-theorem, 7.14)
If M −→∗

β,η N then there exists some P s. t. M −→∗
β P −→∗

η N .

We follow Takahashi [Tak95].

Definition 2.7.11 ([Tak95] 3.1)
The parallel η-reduction, denoted by =⇒η is defined inductively defined as

• a =⇒η a, if a is an atom.

• If v 6∈ Var(M) ∪ Var(M ′), M [x := v] =⇒η M
′[y := v], then λx.M =⇒η

λy.M ′.

• If M =⇒η M
′, N =⇒η N

′, then M N =⇒η M
′ N ′.

• If M =⇒η M
′, z 6∈ FV(M), then λz.M z =⇒η M

′.

Lemma 2.7.12 (a) M =⇒η M .

(b) M =⇒η M
′, v 6∈ Var(M) ∪ Var(M ′), then M [x := v] =⇒η M

′[x := v].

(c) If M ≡α M
′ =⇒η N

′ ≡α N , then M =⇒η N .

(d) If M =⇒η M
′, then M [x := N ] =⇒η M

′[x := N ].

(e) If M −→η M
′, then M =⇒η M

′.

(f) If M =⇒η M
′, then M −→∗

η M
′.

(g) If M =⇒η M
′, N =⇒η N

′, then M [y := N ] =⇒η M
′[y := N ′].
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(h) −→∗
η is the transitive closure of =⇒η.

Definition 2.7.13 (a) We define M �k N (M is the k-fold η-expansion of
N) by

• M �0 M .

• M�k+1N iff M ≡ λz.M ′ z for some M ′ s. t. z 6∈ FV(M ′), M ′
�kM .

(b) M �N iff M �k N for some k.

Lemma 2.7.14 ([Tak95] 3.2)

(a) M =⇒η x iff M � x.

(b) M =⇒η N1 N2 iff M �M1 M2 for some Mi s. t. Mi =⇒η Ni.

(c) M =⇒η λx.N iff M � (λy.M ′) for some M ′ s. t. for some z 6∈ Var(M ′)∪
Var(N) M ′[y := z] =⇒η N [x := z].

Proof:
(a): “⇒” Induction on M =⇒η x.
Case M ≡ x. Trivial.
Case M ≡ λz.M ′ z, z 6∈ FV(M ′), M ′ =⇒η x. By IH M ′

�k x some k,
M �k+1 x.
“⇐” trivial.
(b), (c): similarly.

Lemma 2.7.15 ([Tak95] 3.3)
Assume M =⇒β M

′, N =⇒β N
′, k ≥ 0.

(a) If Mk �k λx.M , then Mk =⇒β λu.M
′[x := u].

(b) If Mk �k λx.M , then Mk N =⇒β M
′[x := N ′].

(c) If Mk �k M , then Mk N =⇒β M
′ N ′.

Proof:
Proof by induction on k.
k = 0 is trivial.
k −→ k + 1:
(a), (b): Let

Mk+1 ≡ λz.Mk z ,

Mk �k λx.M .

(a): By IH
Mk =⇒β λu.M

′[x := u] ,

Therefore
Mk v⇒M ′[x := v] ,
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(v fresh), therefore

Mk+1 = λz.Mk z⇒λu.M ′[x := u] .

(b) By IH (c) Mk u =⇒β M
′ u for some fresh u,

N =⇒β N
′ .

(Mk z)[z := u] ≡Mk u =⇒β M
′ u ,

therefore
Mk+1 N =⇒β (M ′ u)[u := N ′] ≡M ′ N ′ .

(c) Let
Mk+1 = λz.Mk z Mk �k M , z 6∈ FV(Mk) .

By IH
Mk u =⇒β M

′ u ,

therefore

Mk+1 N ≡ (λz.Mk z) N =⇒β (M ′ u)[u := N ′] ≡M ′ N ′ .

Lemma 2.7.16 ([Tak95] 3.4)

M =⇒η P =⇒β N

implies
M =⇒β P

′ =⇒η N

for some P ′

Proof:
Induction on P =⇒β N .
Case P an atom, P ≡ N . Trivial.
Case

P ≡ λx.P1, N ≡ λy.N1, P1[x := u] =⇒β N1[y := u] .

Then M � λz.M1 s. t.

M1[z := v] =⇒η P1[x := v] .

W.l.o.g. v ≡ u. By IH

M1[z := u] =⇒β P
′
1 =⇒η N1[y := u]

for some P ′1.
M1[z := u] =⇒β P

′
1 M � λz.M1

M1 =⇒β P
′
1[u := z]
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therefore

M =⇒β λu.P
′
1 =⇒η λy.N1 ≡ N

Case P ≡ P1 P2, N ≡ N1 N2, Pi =⇒β Ni. Then

M �M1 M2

s. t. Mi =⇒η Pi. By IH

Mi =⇒β P
′
i =⇒η Ni .

therefore for some P3 s. t. P3 � P ′1 P
′
2 we have

M =⇒β P3 =⇒η P
′
1 P

′
2 =⇒η N

Case P ≡ (λx.P1) P2, Pi =⇒β Ni, N ≡ N1[x := N2].
Then

M �k M
′
1 M2, M ′

1 � λu.M1

for some k, Mi s. t.

M2 =⇒η P2 M1[u := v] =⇒η P1[x := v] .

By IH

M2 =⇒β P
′
2 =⇒η N2 ,

M1[u := v] =⇒β P
′
1 =⇒η N1[x := v] .

Now

M ′
1 M2 =⇒β P

′
1[v := P ′2] =⇒η N1[x := N2] ,

and for some P3 �k P
′
1[v := P ′2] we get

M =⇒β P3 =⇒η P
′
1[v := P ′2] =⇒η N1[x := N2] .

Proof of Theorem 2.7.10:

By Lemma 2.7.16, since =⇒β , =⇒η are the transitive closures of −→β ,
−→η .

Lemma 2.7.17 ([Tak95] 3.6, 3.7)

Assume P =⇒η Q.

(a) If P is in β-normal form, so is Q.

(b) If Q has a β-normal form, so has P .
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Proof:
In this proof normal form means β-normalform.
(a) Induction on P :
Case P is atom:

P ≡ Q .

Case P ≡ λx.P ′:
Subcase Q ≡ λx.Q′, P ′ =⇒η Q

′. P ′ in normal form, by IH therefore Q′,
therefore Q as well.
Subcase

P ′ ≡ P ′′ x, x 6∈ FV(P ′′), P ′′ =⇒η Q .

P ′′ is in normal form, by IH Q as well.
Case P ≡ P1 P2. Then

Q ≡ Q1 Q2, Pi =⇒η Qi .

By IH Qi in normal form, P1 is no application therefore Q1 neither, Q in
normal form.
(b) By 2.7.16 it suffices to show the assertion for Q in normal form. We
show:

P =⇒η Q,Q in normal form ⇒ P has a normal form P ∗ s. t.
P not an application ⇒ P ∗ �N for some N s. t.

N is not an application:

Induction on Q:
Case Q an atom: P ≡ Q.
Case Q ≡ λx.Q′. Then

P � λx.P ′ P ′ =⇒η Q
′

Q is in normalform, therefore as well Q′, P ′ has normal form P ′′, P ′ =⇒∗
β

P ′′, therefore
P =⇒∗

β λx.P
′′ .

Case Q ≡ Q1 Q2. Then Q1 is not an application.

P � P1 P2, Pi =⇒η Qi

By IH Pi have normal form P ∗i , P ∗1 � N1 where N1 not an application,
and for some P ′, P ′′ s. t.

P ′ � P ∗1 P
∗
2

P ′′ � N P2

we get
P =⇒∗

β P
′ =⇒∗

β P
′′ ,

P ′′ in normal form.
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Proof of Theorem 2.7.9.
Assume N has βη-normal form M . Then

N =⇒∗
β N

′ =⇒∗
η M .

M is in β-normal form, so N ′ has β-normal form.
Assume N has β-normal form N ′. Since in every η-step, the length of a
term is reduced, there is a N ′′ s. t. N ′′ has no η-redex and

N ′ =⇒∗
η N

′′ .

N ′ is in β-normal form, by Lemma 2.7.17 (a) as well N ′′, therefore N ′′ is
in βη normal form.

2.8 Extensionality in combinatory logic

2.8.1 Extensional equality

Notation 2.8.1 (8.1)
In this section, “term” means “CL-term”.

Definition 2.8.2 (8.1, 8.2)

(a) The following are possible additional rules, which can be added to CLw

(ext) M P = N P (for all terms P )

M = N
(ζ) M x = N x

M = N

if x 6∈ FV(M N)

(ξ) M = N

λ∗x.M = λ∗x.N

(η) λ∗x.M x = M if x 6∈ FV(M)

((ω) will not be treated here;
(η) allows only to derive new equations, if we replace the definition of λ∗ by
a different definition (see below) since with our definition for x 6∈ FV(M)

λ∗x.M x ≡M ,

Note that the first two rules have infinitely many premises.

(b) The following 4 formal theories are extensions of CLw by the following
rules

CL + (ext) add (ext);
CLζ add (ζ);
CLξ add (ξ);

CLw extended by (η) alone will not be treated because that is identical
with CLw.
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Theorem 2.8.3 (8.4, 8.7).

(a) CL + (ext) and CLζ are theorem-equivalent.

(b) CLζ and CLξ are rule-equivalent and therefore as well theorem-equivalent.

Remark CL + (ext) and CLζ are not rule-equivalent. (Consider e.g.
k x = s x. From it it is probably not possible to prove in CL + (ext) that
k = s, but in CLζ this is an instance of a rule.
However to show

¬(k x = s x`CL+(ext)k = s)

is probably not easy.
Proof of Theorem 2.8.3:

• (ext) is trivially derivable in CLζ .

• (ζ) is admissible in CL + (ext):

Show that, if CL + (ext)`M = N , then

CL + (ext) ` M [x1 := K1, . . . , xn := Kn] =

N [x1 := K1, . . . , xn := Kn]

by induction on the derivation.
We write [~x := ~K] for

[x1 := K1, . . . , xn := Kn] .

– If the last rule is a rule in CL this is clear.

– Case last rule (ext): Assume

M P = N P for all terms P

If we naively apply the IH to the premise of that rule we get

M [~x := ~K] P [~x := ~K] = N [~x := ~K] P [~x := ~K]

for all P which does not suffice to prove by using (ext).

M [~x := ~K] = N [~x := ~K] .

So we have to rename the variables in P appropriately.

Let P be a term. Let x∗i be distinct variables s. t.

x∗i 6∈ FV(M N P K1 · · ·Kn x1 · · ·xn)

P ∗ := P [x1 := x∗1, . . . , xn := x∗n] .

Write [~x := ~x∗] for [x := x∗1, . . . , xn := x∗n]. Then

P ∗[~x := ~K, ~x∗ := ~x] ≡ P ,
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M [~x := ~K, ~x∗ := ~x] ≡ M [~x := ~K] ,

N [~x := ~K, ~x∗ := ~x] ≡ N [~x := ~K] ,

We have
CL + (ext)`M P ∗ = N P ∗

therefore by IH

CL + (ext) ` (M P ∗)[~x := ~K, ~x∗ := ~x]

= (N P ∗)[~x := ~K, ~x∗ := ~x] ,

therefore

CL + (ext)`M [~x := ~K] P = N [~x := ~K] P

and, since P was arbitrary, therfore by (ext)

CL + (ext)`M [~x := ~K] = N [~x := ~K]

Now if CL+(ext) proves M x = N x, x 6∈ FV(M N), then it proves
(substitute for x P )

M P = N P

for all P and therefore M = N , (ζ) is admissible in CL + (ext).

– (ζ) is derivable in (ξ):
Assume M x = N x, x 6∈ FV(M N), and show in CLξ M = N :

By (ξ)
λ∗x.M x = λ∗x.N x ,

by definition

M ≡ λ∗x.M x
N ≡ λ∗x.N x

therefore M = N .

– (ξ) is derivable in (ζ):
Assume M = N , and show in CLζ λx

∗M = λx∗.N :

Now
x 6∈ FV(λ∗x.M)(λ∗x.N) ,

and
(λ∗x.M) x = M = N = (λ∗x.N) x

by ζ therefore
λ∗x.M = λ∗x.N .

Definition 2.8.4 (8.5)
=cβη is the equality relation determined by CL + (ext):

M =cβη N⇔`CL+(ext)M = N
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Remark 2.8.5 (8.6, 8.8)

(a) In combinatory logic we have trivially η and the rule which makes combi-
natory logic extensional is the ξ-rule.

(b) If we defined λ∗x.M by not having the special case λ∗x.M x := M if
x 6∈ FV(M), then we would get Theorem 2.8.3 (a), but in 2.8.3 (b) only:
CL + (ζ) and CL + (ξ) + (η) are rule-equivalent.

2.8.2 An axiomatisation of extensionality by finitely many equa-
tions

(ζ) and (ξ) are difficult to handle:

• For verifying extensional equality using the (ζ)-rule, we need to need to
test whether some subterm P of a term M , applied to a fresh variable x, is
equal to another term of the form P ′ x, in order to replace now using (ζ)
P by P ′, where the equation P x =c,ζ P

′ x might have a long derivation,
so might not follow by only a one step reduction or expansion.

• For verifying extensional equality using the (ξ)-rule, we need to test,
whether there is a subterm of a given term which is of the form λ∗x.P , in
order to replace it by λ∗x.P ′ for some other term P ′ which is equal to P .
This is decidable, but still complicated to check.

We will in the following develop an axiomatization of extensional equality
in the form of finitely many equations of the form M = N . Then, one
needs to verify only, whether a subterm of a given term is of the form of
the left or right side of one of these equations in order to replace it by
the other side. However, unless we have for a corresponding reduction
we have Church-Rosser this will not provide us with an easy procedure
for determining whether two terms are equal – we might need to expand
a term first to apply one of the equations. The book does not treat
how to derive a reduction system from these axioms, which is Church
Rosser. (However the extension of the →w by the (ξ) is Church Rosser,
see [HS86], 9.16). However, it seems that the best way of checking equality
of combinator terms is by translating them into λ-terms and test whether
they are βη-equal. The interest of the following axioms is more theoretical.
We will derive this axiomatization in 3 steps. In each step we will consider
extensions of CL by finitely many equations as axioms.

Definition 2.8.6 A finite extension CLax of CL is the extension of CL by
finitely many equations Mi = Ni as axioms.

Step 1: We have
λ∗x.M N ≡ s (λ∗x.M) (λ∗x.N)

in case x ∈ FV(M N), N 6≡ x ∨ x ∈ FV(N). If we replace λ∗ by λ, the
above equation holds for λ-terms with ≡ replaced by =.
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We will later show that extensional λ-calculus and combinatory logic prove
the same equations w.r.t. this translation, so we want that in our proposed
finite extension CLax of CL

CLax`λ∗x.M N = s (λ∗x.M) (λ∗x.N) ,

which would then reduce proofs by induction over the form of λ∗x.N only
to cases N ≡ P Q and N an atom only.

Lemma 2.8.7 (8.10)
Assume CLax is a finite extension of CL. Assume CLax proves

(Ax1) λ∗x, y.s (k x) (k y) = λ∗x, y.k (x y)
(Ax2) λ∗x.s (k x) I = λ∗x.x

Then for all M,N, x

CLax`λ∗x.M N = s (λ∗x.M) (λ∗x.N) .

Proof:
If x ∈ FV(M N) and x ∈ FV(M) ∨N 6≡ x,

λ∗x.M N ≡ s (λ∗x.M) (λ∗x.N) .

In all other cases we will look at the above equation from left to right.
Case x 6∈ FV(M N):

s (λ∗x.M) (λ∗x.N) ≡ s (k M) (k N)
=w (λ∗x, y.s (k x) (k y)) M N
Ax 1
= (λ∗x, y.k (x y)) M N
=w k (M N)
≡ λ∗x.M N

Case x 6∈ FV(M), N ≡ x.

s (λ∗x.M) (λ∗x.N) ≡ s (k M) I
=w (λ∗x.s (k x) I) M
Ax 2
= (λ∗x.x) M
=w M
≡ λ∗x.M N

Step 2 We want a finite extension CLax of CL s. t.

CLax`M = N⇒CLax`λ∗x.M = λ∗x.N .

If we have (Ax1), (Ax2) above fulfilled, the case where M , N is not an
outermost redex reduces to subterms of M , N . The difficult case is when
M , is a redex, i.e. we need to find a finite extension CLax s. t.

(1) CLax ` λ∗x.k M N = λ∗x.M
(2) CLax ` λ∗x.s M N P = λ∗x.(M P ) (N P )



76 CHAPTER 2. λ-CALCULUS AND COMBINATORY LOGIC

Now, if CLax proves (Ax1) (Ax2), then the left and right side of (1), (2)
are, with

M∗ := λ∗x.M
N∗ := λ∗x.N
P ∗ := λ∗x.P

provable in CLax equal to

(1a) λ∗x.k M N
Lemma 2.8.7

= s (λ∗x.k M) N∗

Lemma 2.8.7
= s (s (k k) M∗) N∗

(1b) λ∗x.M ≡ M∗

(2a) λ∗x.s M N P
Lemma 2.8.7

= s (λ∗x.s M N) P ∗

Lemma 2.8.7
= s (s (λ∗x.s M) N∗) P ∗

Lemma 2.8.7
= s (s (s (k s) M∗) N∗) P ∗

(2b) λ∗x.M P (N P )
Lemma 2.8.7

= s (λ∗x.M P ) (λ∗x.N P )
Lemma 2.8.7

= s (s M∗ P ∗) (s N∗ P ∗)

Therefore, if CLax proves that the righthandsides of (1a), (1b) and of (2a),
(2b) are equal, then (1), (2) follow. Now we just axiomatize this condition
and get the following Lemma

Lemma 2.8.8 (8.11)
Assume CLax is a finite extension of CL. Assume CLax proves (Ax1), (Ax2)
from Lemma 2.8.8 and

(Ax3) λ∗x, y.s (s (k k) x) y = λ∗x, y.x
(Ax4) λ∗x, y, z.s (s (s (k s) x) y) z =

λ∗x, y, z.s (s x z) (s y z)

Then for all M,N,P, x

(1) CLax ` λ∗x.k M N = λ∗x.M
(2) CLax ` λ∗x.s M N P = λ∗x.(M P ) (N P )

Proof: By the above and

(λ∗x.Q) R = Q[x := R] .

Definition 2.8.9 (8.12)

(a) The combinatory βη-axioms are

(β − ax1) λ∗x, y.s (k x) (k y) = λ∗x, y.k (x y)
(β − ax2) λ∗x.s (k x) I = λ∗x.x
(β − ax3) λ∗x, y.s (s (k k) x) y = λ∗x, y.x
(β − ax4) λ∗x, y, z.s (s (s (k s) x) y) z =

λ∗x, y, z.s (s x z) (s y z)



2.8. EXTENSIONALITY IN COMBINATORY LOGIC 77

Note that this axioms expand to purely combinatorial equations, which
do not contain λ∗ (especially they are closed).

(b) CLβηax is the extension of CL by the above axioms.

Theorem 2.8.10 (8.13) CLβηax is theorem equivalent to CLξ, CLζ and CL +
ext.
Especially, the equality determined by CLβηax is =cβη.

Proof:
We show CLβηax is theorem equivalent to CLξ.
First all additional axioms of CLβηax are provable in CLξ: Any of the
additional axioms is of the form

λ∗x1, . . . , xn.M = λ∗x1, . . . , xn.N .

By ξ it can be derived in CLξ , if

M = N

can be derived.
Now M and N are in all cases w.r.t. −→w irreducible terms. However,
we have

M ≡ λ∗u.M u N ≡ λ∗u.N u

for some new variable u, and by ξ it suffices to show

M u = N u .

Now in all cases M u and N u reduce with −→w to the same normalform,
therefore M u = N u is provable in CL and the axiom is provable in CLξ.
Verification of this:

(β − ax1) s (k x) (k y) u = k x u (k y u)
= x y
= k (x y) u

(β − ax2) s (k x) I u = k x u (I u)
= x u

(β − ax3) s (s (k k) x) y u = s (k k) x u (y u)
= k k u (x u) (y u)
= k (x u) (y u)
= x u

(β − ax4) s (s (s (k s) x) y) z u = s (s (k s) x) y u (z u)
= s (k s) x u (y u) (z u)
= k s u (x u) (y u) (z u)
= s (x u) (y u) (z u)
= x u (z u) ((y u) (z u))
= s x z u (s y z u)
= s (s x z) (s y z) u .



78 CHAPTER 2. λ-CALCULUS AND COMBINATORY LOGIC

For the other direction we show that (ξ) is admissible in CLβηax, i.e.

CLβηax`M = M ′⇒CLβηax`λ∗x.M = λ∗x.M ′

by induction on the derivation of

CLβηax`M = M ′ .

Case: axiom (k) or (s): Lemma 2.8.8.
Case: (ρ), i.e. M ≡M ′: trivial.
Case: transitivity (τ) or symmetry (σ): by IH, (τ), (σ).
Case: (µ), (ν). So assume

M ≡ N Q
M ′ ≡ N ′ Q′

CLβηax ` N = N ′

CLβηax ` Q = Q′

(where in fact either N ≡ N ′ or Q ≡ Q′). Then by IH (or the rule (ρ))

CLβηax ` λ∗x.N = λ∗x.N ′

CLβηax ` λ∗x.Q = λ∗x.Q′

By Lemma 2.8.7 CLβηax proves

λ∗x.N Q = s (λ∗x.N) (λ∗x.Q)
= s (λ∗x.N ′) (λ∗x.Q′)
= λ∗x.N ′ Q′ .

2.8.3 βη-strong reduction

Definition 2.8.11 (8.16)

(a) The formal theory of βη-strong reduction is obtained from the theory CLw

of weak reduction by replacing −→w by −→s and adding the rule

(ξ) M −→s N

λ∗x.M −→s λ
∗x.N

.

(b)
M −→s N :⇔CLw`M −→s N .

Theorem 2.8.12 (8.17)

(a) −→s is transitive and reflexive.
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(b) P −→s Q⇒FV(Q) ⊆ FV(P ).

(c) P −→s Q⇒M [x := P ] −→s M [x := Q].

(d) P −→s Q⇒P [x := N ] −→s Q[x := N ].

(e) (Church-Rosser)

If P −→s M , P −→s N , then there exists T such that M −→∗
s T , N −→∗

s

T .

Proof: (a) - (d) are easy. (e) can be proved in the next section, by
translating combinatory logic into λ-calculus, using Church-Rosser there
and then translating it back again.

Remark: −→s does not behave very nicely: I is not in normal form: We
have

s k ≡ λ∗x, y.s k x y
−→∗

s λ∗x, y.k y(x y)
−→∗

s λ∗x, y.y
≡ k I

therefore
I ≡ s k k −→∗

s k I k ,

I −→∗
s k I k −→∗

s k (k I k) k −→∗
s k (k (k I k) k) k −→∗

s · · ·
In order to get reduction which behaves better, one can add I as a constant
(not a defined combinator) together with the reduction rule

I x −→s x .

And when adding axioms I x = x, I x −→s x, we get the same lemmata
as before. But still, −→s does not behave well, especially, when a term is
in normal form is relatively complicated.

Definition 2.8.13 (3.7) Strong normal forms. The class of strong nomral forms
or terms in strong normal form is inductively defined by

• If n ≥ 0, M1, . . . ,Mn are in strong normal form, a an atom which is not
s, k, then

a M1 · · ·Mn is in strong normal form.

• If M is in strong normal form so is λ∗x.M .

Definition 2.8.14 (8.19) A CL-term M has a strong normal form M ∗ iff M∗

is in strong normal form and
M −→s M

∗

Lemma 2.8.15 (a) A term M has at most one strong normal form.
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(b) If M∗ is in strong normal form, N =cβη M
∗, then M∗ is the strong normal

form of N .

(c) M∗ is the strong normal from of M iff M∗ is in strong normal form and

M =cβη M
∗

Proof: (c) follows from (b). If we had I is an atom as above, every strong
normal form would be irreducible and the lemma follows. Without it, one
needs to go via translation into λ-calculus.

2.9 The correspondence between λ and CL

(9)

2.9.1 The extensional equalities (9A, 9B)

Definition 2.9.1 (9.2)
For CL-terms M , we define its λ-transformation Mλ by

xλ := x ,
kλ := λx, y.x
sλ := λx, y, z.x z (y z) ,

(MN)λ := Mλ Nλ

Remark 2.9.2 (9.3, 9.13)

(a) M 7→Mλ is injective (modulo ≡), we even have

M 6≡ N⇒Mλ 6≡α N
λ .

(b) FV(Mλ) = FV(M).

(c) (M [x := N ])λ ≡α M
λ[x := Nλ]. .

(d) Iλ =β λx.x.

(e) (λ∗x.M)λ =βη λx.M
λ.

Proof: (a) - (c) are clear.
(d):

Iλ ≡ sλ kλ kλ

=β λz.kλ z (kλ z)
=β λz.z .

(e): Induction on M :
Case M ≡ x:

(λx.x)λ ≡ Iλ
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=β λx.x
≡ λx.xλ .

Case x 6∈ FV(M). Then x 6∈ FV(Mλ).

(λ∗x.M)λ ≡ (k M)λ

≡α (λz, x.z) kλ Mλ

=β λx.Mλ

(Note that in the last line we used x 6∈ FV(Mλ) in order to guarantee
that the bounded variable x is not replaced by a new one).
Case M ≡ N x, x 6∈ FV(N).

(λ∗x.M)λ ≡ Nλ

=η λx.Nλ x
≡ λx.Mλ .

Case otherwise, M ≡ P Q.

(λ∗x.M) ≡ sλ (λ∗x.P )λ (λ∗x.Q)λ

=β λx.(λ∗x.P )λ x((λ∗x.Q)λ x)
IH
=β λx.(λx.P λ) x((λx.Qλ) x)
=β λx.P λ Qλ

≡ λx.Mλ

Definition 2.9.3 (9.7)
For each λ-term we associate a CL-term M cη by

xcη := x .
(M N)cη := M cη N cη .
(λx.M)cη := λ∗x.(M cη) .

Lemma 2.9.4 (9.10)

(a) FV(M cη) = FV(M).

(b) M ≡α N⇒M cη ≡ N cη.

(c) (M [x := N ])cη ≡M cη[x := N cη].

Proof:
(a): easy.
(b): Prove first simultaneously (a) and (c) for N a variable by induction
on M .
(c): easy, using (b).

Theorem 2.9.5 (9.8, 9.14b)



82 CHAPTER 2. λ-CALCULUS AND COMBINATORY LOGIC

(a) (Mλ)cη ≡M .

(b) (M cη)λ =βη M .

Proof:
(a) Induction on M :
M ≡ x: trivial.
M ≡ N P : by IH.
M ≡ k:

(kλ)cη ≡ (λx, y.x)cη

≡ λ∗x.λ∗y.x
≡ λ∗x.k x
≡ k .

M ≡ s:

(sλ)cη ≡ (λx, y, z.x z (y z))cη

≡ λ∗x.λ∗y.λ∗z.x z (y z)
≡ λ∗x.λ∗y.s (λ∗z.x z) (λ∗z.y z)
≡ λ∗x.λ∗y.s x y
≡ λ∗x.s x
≡ s .

(b) Induction on M :
M variable: trivial.
M ≡ P Q: IH.
M ≡ λx.N :

(M cη)λ ≡ (λ∗x.N cη)λ

2.9.2 (e)
=βη λx.(N cη)λ

IH
=βη λx.N

Lemma 2.9.6 (9.5)

(a)
M −→∗

w N⇒Mλ −→∗
β N

λ .

(b)
M =∗

w N⇒Mλ =β N
λ .

(c)
M =cβη N⇒Mλ =βη N

λ .

Proof: (a): It suffices to consider the case M −→w N . Induction on
M −→w N .
(b): by (a).
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(c): Assume M =cβη N . Then

CLξ`Mλ =βη N
λ .

Induction on this derivation.

Only difficult case (ξ):

Assume λ∗x.M = λ∗x.N is derived from M = N By IH

Mλ =βη N
λ ,

therefore by Remark 2.9.2 (e)

(λ∗x.M)λ =βη λx.M
λ =βη λx.N

λ =βλ (λ∗x.N)λ .

Lemma 2.9.7 (9.11)

M =βη N⇒M cη =cβη N
cη .

Proof:

Suffices to consider M −→β N , M −→η N , M ≡α N . Difficult cases:

Case M ≡α N : by the above lemma.

Case M ≡ (λx.P ) Q, N ≡ P [x := Q].

M cη ≡ (λ∗x.P cη) Qcη

=w P cη[x := Qcη]
≡ (P [x := Q])cη

Case M ≡ λx.P x, x 6∈ FV(P ), N ≡ P .

M cη ≡ λ∗x.P cη x
≡ P cη

≡ N cη

Case M ≡ λx.M ′, N ≡ λx.N ′, N −→β N
′ or N −→η N

′.

By IH N cη =cη N
′cη

, therefore

M cη ≡ λ∗x.N cη

=cη λ∗x.N ′cη

≡ M ′cη

Theorem 2.9.8 (9.12, 9.14)

(a) M =cβη N⇔Mλ =βη N
λ.

(b) M =βη N⇔M cη =cβη N
cη.
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Proof:
(a) “⇒” Lemma 2.9.6 (c).
“⇐” If Mλ =βη N

λ then

M
2.9.5 (a)
≡α (Mλ)cη 2.9.7

=β (Nλ)cη
2.9.5 (a)
≡α N .

(b) “⇒” Lemma 2.9.7.
“⇐” If M cη =βη N

cη then

M
2.9.5 (b)
≡α (M cη)λ (a)

=β (N cη)λ
2.9.5 (b)
≡α N .

2.9.2 Combinatory β-equality (9C)

In this section in [HS86] the relationship between =β and a combinatory
version of it is studied. The main tool is to redefine λ∗x.N by omitting
the special case λ∗x.N x ≡ N if x 6∈ FV(N), which automatically makes
λ∗x.M preserve η-equality.
Unfortunately, the equality on combinators which corresponds to β-equality
is of similar complexity as the cβη equality. We omit the details. The in-
terested reader might look at the book where most details (but not all)
are carried out.

2.10 Models for CLw (10)

2.10.1 Applicative structures (10A)

Notation 2.10.1 (10.1)

(a) In this section, term means CL-term (without constants apart from k, s).

(b) Var will be the set of variables used in the definition of CL-terms.

Definition 2.10.2 (10.2, 10.1)

(a) An applicative structure is a pair D = (D, ·), s.t.

• D is a set with at least two elements, called the domain of D and

• · : D ×D→D.

(b) Let in this subsection (D, ·) be an applicative structure, and a, b, c, d, e
denote (in this section) elements of D.

(c) We write · infix and omit parenthesis with the convention that · is asso-
ciative to the left, i.e.

a · b · c · d := (((a · b) · c) · d) .
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(d) An assignment w.r.t. D (in [HS86] it is called valuation) is a function

ρ : Var→D .

(e) If ρ is an assignment w.r.t. (D, ·), x ∈ Var, a ∈ D then ρa
x is the assignment

defined by

ρa
x(y) :=

{
a if x ≡ y,
ρ(y) if x 6≡ y.

(f) If t is any expression depending on d1, . . . , dn ∈ D, let

λ\ d1, . . . , dn ∈ D.t

or (if D is clear from the context)

λ\ d1, . . . , dn.t

be the (set theoretic) function, which assigns to d1, . . . , dn ∈ D t.

Definition 2.10.3 (10.3, 10.4)

(a) A function f : Dn→D (n ≥ 1) is representable in (D, ·) or, if · is clear
from the context, short representable in D, iff there exists an a ∈ D s. t.

∀d1, . . . , dn ∈ D.f(d1, . . . , dn) = a · d1 · d2 · · · · · dn ,

in other words

f = λ\ d1, . . . , dn ∈ D.a · d1 · d2 · · · · · dn .

In this case a is called a representative of f .

(b) (Dn→repD) is the set of n-ary representable functions in D.

(c) For a ∈ D, Fun(a) is the unary function represented by a i.e.

Fun(a) : D→D, Fun(a)(d) := a · d ,

in other words

Fun(a) = λ\ d ∈ D.a · d .

(d) For f : D→D let

Rep(f) := {a | Fun(a) = f} .

Definition 2.10.4 (10.5, 10.7)

(a) For a, b ∈ D, a is extensionally equivalent to b, (a ∼ b) iff Fun(a) = Fun(b).
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(b) For a ∈ D the extensional equvivalence class containing of a, ã is defined
by

ã := {b ∈ D | b ∼ a} .
Further

D/ ∼:= {ã | a ∈ D} .

(c) (D, ·) is extensional iff

∀a, b ∈ D.(Fun(a) = Fun(b)→a = b) .

Lemma 2.10.5 (10.6 d, 10.8)

(a) Rep is a bijection from D→repD to D/ ∼.

(b) The following are equivalent:

(a) (D, ·) is extensional.

(b) ∀a ∈ D.ã is a singleton.

(c) ∀f ∈ D→repD.Rep(f) is a singleton.

(d) Fun : D→(D→repD) is injective.

(e) Fun : D→(D→repD) is bijective.

2.10.2 Combinatory algebras (10B)

Definition 2.10.6 (a) A model of CLw is a quadrupel

(D, ·,kD , sD)

s. t.

• (D, ·) is an applicative structure,

• kD , sD ∈ D,

• ∀a, b ∈ D(kD · a · b = a).

• ∀a, b, c ∈ D(sD · a · b · c = a · c · (b · c)).

(b) A combinatorial algebra is an applicative structure (D, ·) s. t. for some
kD , sD ∈ D

(D, ·,kD, sD) is a model of CLw .

(c) Let in this subsection (D, ·,kD , sD) be a model of CLw.

Remark 2.10.7 (a) kD 66= sD.

(b) In an extensional combinatory algebra kD, sD are uniquely defined.
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Proof: (a) Otherwise

kD · kD = kD · kD · kD · kD

= sD · kD · kD · kD

= kD · kD · (kD · kD)
= kD

and for a, b ∈ D s. t. a 6= b

a = kD · a · b
= kD · kD · a · b
= sD · kD · a · b
= kD · b · (a · b) = b .

(b) The equations

∀a, b ∈ D . (kD · a · b = a) ,
∀a, b, c ∈ D . (sD · a · b · c = a · c · (b · c)) .

determine kD , sD uniquely by extensionality.

Definition 2.10.8 (10.10, 10.13)

(a) Let D = (D, ·,kD, sD) be a model of CLw. For assignments ρ and terms

N we define [[ N ]]Dρ ∈ D by

• [[ x ]]
D
ρ := ρ(x).

• [[ k ]]
D
ρ := kD.

• [[ s ]]Dρ := sD.

• [[ M N ]]
D
ρ := [[ M ]]

D
ρ · [[ N ]]

D
ρ .

If there is no confusion we write [[ M ]] , [[ M ]]ρ or [[ M ]]
D

instead of [[ M ]]
D
ρ .

(b)

D |= M = N [ρ] :⇔ [[ M ]]
D
ρ = [[ N ]]

D
ρ ,

D |= M = N :⇔ ∀ρ assignment.D |= M = N [ρ] .

(c) A combinatory βη-model or model of CLβηax or Curry-algebra is a model
of CLw which fulfills the βη axioms (Definition 2.8.9).

Lemma 2.10.9 (10.11, 10.11.1, 10.12)

(a) If ∀x ∈ FV(M).ρ(x) = σ(x) then [[ M ]]ρ = [[ M ]]σ.

(b) If FV(M) = ∅, for all ρ, σ [[ M ]]ρ = [[ M ]]σ.
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(c) [[ M [x := N ] ]]ρ = [[ M ]]
ρ

[[ N ]]ρ
x

Lemma 2.10.10 Each model of CLw or CLβηax fulfills all the provable equa-
tions of the corresponding theory.

Proof: trivial.

Definition 2.10.11 (a) Let T be CLw or CLβηax.

Define for each CL-term M [M ] := {N CL-term| T`M = N}.
The term model of T ,M(T ), is

(D, ·,k, s)

with

• D = {[M ] |MCL-term }.
• [M ] · [N ] := [M N ].

• kD := [k].

• sD := [s].

Note that the domain of the term model are equivalence classes of open
terms.

Theorem 2.10.12 (10.20)
Let D := (D, ·,kD, sD) be the term model of T , T ∈ {CLw,CLβηax}.

(a) · is well-defined.

(b) D is a model of T .

(c) If

• FV(M) = {x1, . . . , xn},
• ρ(xi) = [Ni] (i = 1, . . . , n)

then
[[ M ]]

D
ρ = [M [x1 := N1, . . . , xn := Nn]] .

The following theorem will fail for the λ-calculus:

Theorem 2.10.13 (10.22, the Submodel theorem).
Assume

• T ∈ {CLw,CLβηax},

• D := (D, ·,k, s) is a model of T .

• D′ ⊆ D,
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• D′ closed under ·, kD, sD, i.e.

– ·[D′ ×D′] ⊆ D′ (i.e. ∀d, d′ ∈ D′.d · d′ ∈ D′),

– kD, sD ∈ D′.

Then the submodel of D given by D′, D � D′ := (D′, · � (D′ ×D′),kD , sD) is a
model of T as well.

Proof: D′ has two elements (kD , sD) and fulfills all the axioms and is
closed under all the rules, since D is.

Definition 2.10.14 (10.23).
The interior, written asDo, of a model of T D = (D, ·,kD , sD) (T ∈ {CLw,CLβηax})
is D � Do with

Do := { [[ M ]]D |M closed }.

Lemma 2.10.15 Do is the least submodel of D:

• Do is a submodel of D and

• for every other submodel D′ = (D′, . . . ) we have Do ⊆ D′.

Proof: D0 is the least subset of D closed under k, s, ·.

Remark 2.10.16 (10.24). One sees immediately, that every extensional model
of CLw is a model of CLβηax.
However, there are non-extensional models of CLβηax:
Plotkin ([Plo74]) has constructed closed λ-terms M , N s. t.

• λβ + (ext)`M Q = N Q for all closed λ-terms Q, but

• λβ + (ext) 6 `M = N .

With M ′ := M cη, N ′ := N cη it follows

• CLβηax`M ′ Q = N ′ Q for all closed CL-terms Q, but

• CLβηax 6 `M ′ = N ′.

Now the interior D of the term model of CLβηax has domain

D = {[M ] |M closed CL− term} .

Therefore for all x ∈ D, x = [Q] for some closed term Q and therefore

[M ′] · x = [M ′] · [Q]
= [M ′ Q] = [N ′ Q]
= [N ′] · [Q]
= [N ′] · x ,

but
[M ′] 6= [N ′] .
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2.10.3 A more abstract definition of combinatory algebras (10.25
- 10.28)

Definition 2.10.17 (10.26, 10.27)

(a) A combination of variables x1, . . . , xn is a CL-term built from atoms
x1, . . . , xn only (especially no atoms k, s!).

(b) For combinations M of x1, . . . , xn, assignments ρ and applicative struc-

tures D := (D, ·) we define [[ M ]]
D
ρ by:

• [[ x ]]Dρ := ρ(x).

• [[ M N ]]
D
ρ := [[ M ]]

D
ρ · [[ N ]]

D
ρ .

(c) An applicative structure D := (D, ·) is combinatorially complete iff for any
sequence u, x1, . . . , xn of variables and every combination M of x1, . . . , xn

the formula
∃u.∀x1, . . . , xn.u x1 · · ·xn = M

is true in D, which means

∃a ∈ D.∀d1, . . . , dn ∈ D.a · d1 · · · · · dn = [[ M ]]
ρ

d1
x1

d2
x2
···dn

xn

,

in other words there exists a ∈ D which represents

λ\ d1, . . . , dn ∈ D. [[ M ]]
ρ

d1
x1

d2
x2
···dn

xn

.

Theorem 2.10.18 (10.28, combinatory completeness theorem.
An applicative structure (D, ·) is combinatory complete iff it is a combinatory
algebra.

Proof:
If (D, ·) is combinatorially complete, then we can choose

• kD ∈ D such that

λ\ d, e ∈ D.kD · d · e = λ\ d, e ∈ D. [[ x ]]ρd
x

e
y

• and sD ∈ D such that

λ\ d, e, f ∈ D.sD · d · e · f = λ\ d, e, f ∈ D. [[ x z (y z) ]]
ρd

x
e
y

f
z

On the other hand in a combinatory algebraD with correspdonding model
of CLw D′,

[[ λ∗x1, . . . , xn.M ]]
D′

represents
λ\ d1, . . . , dn. [[ M ]]

D
ρ

d1
x1

d2
x2
···dn

xn

:
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For all d1, . . . , dn ∈ D

[[ λ∗x1, . . . , xn.M ]]
D′ · d1 · · · · · dn

= [[ λ∗x1, . . . , xn.M ]]D
ρ

d1
x1

d2
x2
···dn

xn

· [[ x1 ]]
ρ

d1
x1

d2
x2
···dn

xn

· · · · · [[ xn ]]
ρ

d1
x1

d2
x2
···dn

xn

= [[ (λ∗x1, . . . , xn.M) x1 · · ·xn ]]D
ρ

d1
x1

d2
x2
···dn

xn

= [[ M ]]
D

ρ
d1
x1

d2
x2
···dn

xn

.

2.11 Models for λβ (11)

2.11.1 The definition of a λ-model (11A)

Notation 2.11.1 (11.1) In this section, term means λ-term.

Why not take models of combinatory logic as models for the
λ-calculus?
The definition of models of combinatory logic was easy this was just the
straightforward of models for first order logic (in fact for essentially only
the interpretation of terms was needed) to the combinatory logic. To
define models for the λ-calculus however is quite complicated, since we
have to interpret λx.t. Especially closed terms are built from open terms.
A tempting trivial solution would be to choose an extension of combi-
natory logic which is via some translation equivalent to λβ. (Such an
axiomatization was treated in chapter 9C of the book and yields a theory
CLβax similar to CLβηax; the translation of λ-terms into CL just makes
use of the variant λwx.M of λ∗x.M which omits the case λ∗x.M x = M
for closed M).
However in CLβax the translation of the ξ-rule is admissible, but not
derivable, and therefore the models of CLβax fulfill all equations derivable
(without assumptions) using the translation of the ξ-rule, but are not
closed under it. Therefore as well, if we considered models of CLβax as
models of the λ-calculus via the translation into combinators, we would
not get a model closed under the ξ-rule. (That we actually get models
which violate the ξ-rule is shown in [HS86]).

We will in the following define in the following first λ-models in a almost
trivial way. It will be very difficult to construct with this definition λ-
models, therefore we will look then at more abstract concepts.

Definition 2.11.2 (11.1)
If C, D are sets, f : C→D, g : D→C,

g ◦ f = idC ,

then
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• g is called a left inverse of f ,

• f is called a right inverse of g,

• C is called a retract of C,

• (f, g) is called a retraction.

Remark 2.11.3 Assume (f, g) is a retraction. Then

(a) h := f ◦ g is idempotent, i.e. h ◦ h = h,

(b) g is surjective, f is injective.

Further we have that for every pair (f, g) with f : C→D, g : D→C which fulfill
(a), (b), that (f, g) is a retraction, i.e. g ◦ f = idD.

Proof: That a retraction fulfills (a), (b) is easy.
On the other hand, if f, g fulfill (a), (b), x ∈ C, then x = g(y) for some
y ∈ D, and

f(x) = f(g(y)) = f(g(f(g(y)))) = f(g(f(x))) ,

therefore
g(f(x)) = x ,

g ◦ f = idC .

Definition 2.11.4 (11.3)
A λ-model or model of λβ is a tripel

D = (D, ·, [[ · ]])

s. t.

• (D, ·) is an applicative structure,

• [[ · ]] is a mapping from λ-terms M and valuations σ to elements [[ M ]]σ of
D

s. t. for all variables x, y, terms P,Q,M , d ∈ D, valuations σ, σ the following
holds:

(a) [[ x ]]σ = σ(x);

(b) [[ P Q ]]σ = [[ P ]]σ · [[ Q ]]σ .

(c) [[ λx.P ]]σ · d = [[ P ]]σd
x
.

(d) [[ M ]]σ = [[ M ]]ρ if σ � FV(M) = ρ � FV(M).

(e) [[ λx.M ]]σ = [[ λy.(M [x := y]) ]]σ, if y 6∈ FV(M),
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(f) If
∀d ∈ D. [[ M ]]σd

x
= [[ N ]]σd

x
,

then
[[ λx.M ]]σ = [[ λx.N ]]σ .

We write sometimes [[ M ]]Dσ , instead of [[ M ]]σ, (especially if there are several
models involved) and omit σ, if [[ M ]] does not depend on σ.
Further, if FV(M) ⊆ {x1, . . . , xn}, we write

[[ M ]][x1:=d1,... ,xn:=dn]

for [[ M ]]σ , where σ is any assignment s.t. σ(xi) = di.

Definition 2.11.5 (11.11).
Let D = (D, ·, [[ · ]] ) be a λ-model. Then

D |= M = N [σ] :⇔ [[ M ]]σ = [[ M ]]σ ,
D |= M = N :⇔ ∀σ assignment D |= M = N [σ]

We say D models or satisfies M = N for D |= M = N .

Remark 2.11.6 (11.4).

(a) Conditions (a), (b) express compositionality of the model.

(b) Condition (c) express that [[ λx.P ]]σ is a representative of the function

λ\ d ∈ D. [[ P ]]σd
x

: D→D .

(c) Condition (d) is needed, since only in extensional applicative structures
[[ λx.M ]]σ is by (c) completely defined which would guarantee (c). Other-
wise [[ λx.M ]]σ might really depend on the choice of other variables.

(d) Condition (e) corresponds to (α).

(e) Condition (f) corresponds to (ξ):

λ\ d. [[ M ]]σd
x

= λ\ d. [[ N ]]σd
x
⇒ [[ λx.M ]]σ = [[ λx.N ]]σ .

(f) From condition (c) and (f) follows weak extensionality:

λ\ d. [[ M ]]σd
x
∼ λd. [[ N ]]σd

x
⇒ [[ λx.M ]]σ = [[ λx.N ]]σ .

(g) One can replace the conditions in Definition 2.11.5 (a) - (f) by the follow-
ing conditions:

(a) [[ x ]]σ = σ(x);

(b) [[ P Q ]]σ = [[ P ]]σ · [[ Q ]]σ.
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(c) [[ λx.P ]]σ · d = [[ P ]]σd
x
.

(d) [[ λx.P ]]σ ∼ [[ λy.Q ]]ρ⇒ [[ λx.P ]]σ = [[ λy.Q ]]ρ.

That the above four conditions hold will be proved below in Lemma 2.11.8
(b). Further from the new conditions follow of the original ones:

• (a) - (c) are new conditions as well,.

• (d) follows by induction on M ,

• (e) follows by proving Lemma 2.11.7 (a) below from the new conti-
tions by induction on M and then using the new condition (d),

• (f) follows directly by the new conditions (c) and (d).

Lemma 2.11.7 (11.7)
Let (D, ·, [[ · ]]) be a λ-model.

(a) If y 6∈ FV(M) then

[[ M ]]σ = [[ M [x := y] ]]
σ

σ(x)
y

.

(b) If

• FV(M) ⊆ {x1, . . . , xn},
• x1, . . . , xn, y1, . . . , yn are distinct,

• σ(xi) = ρ(yi) (i = 1, . . . , n)

then
[[ M [x1 := y1, . . . , xn := yn] ]]ρ = [[ M ]]σ .

Proof:
(a):
Let d := σ(x).

[[ M ]]σ = [[ M ]]σd
x

= [[ λx.M ]]σ · d
= [[ λy.M [x := y] ]]σ · d
= [[ M [x := y] ]]σd

y

= [[ M [x := y] ]]
σ

σ(x)
y

.

(b)
∀y ∈ FV(M [x1 := y1, . . . , xn := yn]).ρ(y)

= σ
σ(x1)
y1

σ(x2)
y2 · · ·σ(xn)

yn (y)

therefore

[[ M ]]σ
(a)
= [[ M [x1 := y1, . . . , xn := yn] ]]

σ
σ(x1)
y1

σ(x2)
y2

···
σ(xn)
yn x

= [[ M [x1 := y1, . . . , xn := yn] ]]ρ .
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Lemma 2.11.8 (11.8, Berry’s extensionality property)
Let (D, ·, [[ · ]] ) be a λ-model.

(a)
(∀d ∈ D. [[ P ]]σd

x
= [[ Q ]]ρd

y
)⇒ [[ λx.P ]]σ = [[ λy.Q ]]ρ .

(b)
[[ λx.P ]]σ ∼ [[ λy.Q ]]ρ⇒ [[ λx.P ]]σ = [[ λy.Q ]]ρ .

Proof:
(b) follows by (a).
(a):
Assume

∀d ∈ D. [[ P ]]σd
x

= [[ Q ]]ρd
y
,

and let

FV(P ) \ {x} = {x1, . . . , xm} ,
FV(Q) \ {y} = {y1, . . . , yn} .

Let z, u1, . . . , um, v1, . . . , vn be distinct fresh variables,

P ′ := P [x := z, x1 := u1, . . . , xn := un] ,
Q′ := Q[y := z, y1 := v1, . . . , ym := vm]
τ := σσ(x1)

u1

σ(x2)
u2

· · ·σ(xn)
un

ρ(y1)
v1

ρ(y2)
v2

· · ·ρ(ym)
vm

Then

[[ P ′ ]]τd
z

2.11.7 (b)
= [[ P ]]σd

x

= [[ Q ]]ρd
y

2.11.7 (b)
= [[ Q′ ]]τd

z

and therefore

[[ λx.P ]]ρ = [[ λz.P [x := z] ]]ρ
2.11.7 (b)

= [[ λz.P ′ ]]τ
= [[ λz.Q′ ]]τ

2.11.7 (b)
= [[ λz.Q[x := z] ]]ρ
= [[ λy.Q ]]ρ

Lemma 2.11.9 (11.10).
Let (D, ·, [[ · ]] ) be a λ-model.

(a)
[[ M [x := N ] ]]σ = [[ M ]]

σ
[[ N ]]σ
x

.
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(b)
[[ (λx.M) N ]]σ = [[ M [x := N ] ]]σ .

Proof:
(a): Induction on M . Let b := [[ N ]]σ.
Case M ≡ x:

[[ M [x := N ] ]]σ = [[ N ]]σ = b = [[ x ]]σb
x

= [[ M ]]σb
x
.

Case M ≡ y 6≡ x:

[[ M [x := N ] ]]σ = [[ y ]]σ = σ(y) = σb
x(y) = [[ M ]]σb

x
.

Case M ≡ P Q: Immediate by IH.
Case M ≡ λx.P : x 6∈ FV(M), therefore

[[ M [x := N ] ]]σ = [[ M ]]σ = [[ M ]]σb
x
.

Case M ≡ λy.P , y 6∈ FV(M): Since [[ · ]] respects α-equality, w.l.o.g.
y 6∈ FV(N). By IH follows for all d ∈ D

[[ P [x := N ] ]]σd
y

= [[ P ]]σd
y

b
x

= [[ P ]]σb
x

d
y

and by Lemma 2.11.8 (b) therefore

[[ λy.P [x := N ] ]]σ = [[ λy.P ]]σb
x
.

(b) Let b := [[ N ]]σ .

[[ (λx.M) N ]]σ = [[ λx.M ]]σ · b
= [[ M ]]σb

x

(a)
= [[ M [x := N ] ]]σ .

Theorem 2.11.10 (11.12).
Every λ-model models all provable equations of λβ.

Proof:
Induction on the derivation.
Closure under (ρ) (reflexivity), (σ) (symmetry) and (τ) (transitivity) are
trivial.
Closure under (α), (µ), (ν), (ξ) follow by definition.
Closure under (β) follows by Lemma 2.11.9 (b).

Corollary 2.11.11 (11.12.1) If (D, ·, [[ · ]] ) is a λ-model, then (D, ·) is a com-
binatory algebra, especially combinatorially complete.

Proof:

k := [[ λx, y.x ]] s := [[ λx, y, z.x z (y z) ]] .
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Definition 2.11.12 (11.14)
A model of λβη is a λ-model which models λx.M x = M for all M and all
x 6∈ FV(M).

Remark 2.11.13 A model of λβη fulfills all provable equations of λβη.

Note that the following theorem does not hold for combinatory logic, see
Remark 2.10.16.

Theorem 2.11.14 (11.15) A λ-model D is extensional iff it is a model of λβη.

Proof:
Let D = (D, ·, [[ · ]] ).
Assume D is extensional, M a term. Then

[[ λx.M x ]]σ · d = [[ M x ]]σd
x

= [[ M ]]σd
x
· [[ x ]]σd

x

= [[ M ]]σ · d ,

therefore by extensionality

[[ λx.M x ]]σ = [[ M ]]σ .

Assume D is a model of λβη.
Assume

∀d ∈ D. [[ M ]]σ · d = [[ N ]]σ · d ,

x 6∈ FV(M N). Then

[[ M x ]]σd
x

= [[ M ]]σ · d
= [[ N ]]σ · d
= [[ N x ]]σd

x

Therefore
[[ λx.M x ]]σ = [[ λx.N x ]]σ

and

[[ M ]]σ = [[ λx.M x ]]σ
= [[ λx.N x ]]σ
= [[ N ]]σ .

Definition 2.11.15 (11.16).
Let T ∈ {λβ, λβη}.
Define for λ-terms M

[M ] := {N | T`M = N} .
The term model of T , calledMT is

(D, ·, [[ · ]])
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with
D := {[M ] |Mλ-term ,

[M ] · [N ] := [M N ] ,

and, if FV(M) = {x1, . . . , xn}

[[ M ]]σ := [M [x1 := σ(x1), . . . , xn := σ(xn)] .

Remark 2.11.16 In M(T ) above · and [[ · ]] are well-defined and M(T ) is a
model of T .

2.11.2 A syntax free definition of λ-models (11B)

The above definition of a λ-model makes it difficult to define models, since
we have to give a complete definition of [[ · ]] and verify all its properties.
Instead we are going now to give a more abstract and more algebraic
definition, on which the model D∞ we construct (and other models as
well) will be based.
The idea is to start with a combinatory algebra (D, ·) i.e.

(D, ·) is combinatorially complete (1)

Based on it we try to define [[ M ]]ρ by induction on M . Our definition
should be general, i.e. we want to obtain all possible choices of [[ · ]] s.t.

(D, ·, [[ · ]]) is a λ-model ,

which means that in the course of developping [[ · ]] we will need to add
additional parameters, which determine [[ · ]] on (D, ·). In fact, only one
parameter, namely a function Λ : D→D will be needed. This Λ will define
[[ · ]] completely, i.e. we will get that for every choice of [[ · ]] there exists a
unique Λ corresponding to it, which fulfills certain equations and that for
every Λ fulfilling these equations there will exists a unique [[ · ]] based on
it.
Case M ≡ x. By the conditions of λ-model there is no freedom of choice,

[[ M ]]σ = σ(x) .

Case M ≡ P Q. If [[ P ]]σ , [[ Q ]]σ are chosen, there is only one choice
possible for [[ M ]]σ, namely

[[ P Q ]]σ := [[ P ]]σ · [[ Q ]]σ .

Case M ≡ λx.P . If [[ P ]]ρ is defined for all ρ we get the condition

[[ λx.P ]]σ · d = [[ P ]]σd
x
,

i.e. [[ λx.P ]]σ must be one representative of the function

λ\ d. [[ P ]]σd
x
.
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First we need to guarantee the existence of such a representative. Now we
see immediately that we need to define something more generally, namely
for every term M and variables x1, . . . , xn s.t. FV(M) ⊆ {x1, . . . , xn} an
element aM,x1,... ,xn

∈ D s.t.

[[ M ]]σ = aM,x1,... ,xn
· σ(x1) · · · · · σ(xn) .

Note that for every choice of [[ · ]] there might be several choices of aM,~x.
However it is not necessary to consider all such choices, we need only to
guarantee that we finally obtain all choices of [[ · ]] .
It will be useful in the following to abbreviate for ~x = x1, . . . , xn, and
~a = a1, . . . , an

b · σ(~x) := b · σ(x1) · · · · · σ(xn) ,
b · ~a := b · a1 · · · · · an .

We will show that we can find aM,~x in the cases treated before.
In case M ≡ xi we could define

aM,x1,... ,xn
:= (λx1, . . . , xn.xi)

∗

where (λx1, . . . , xn.xi)
∗ is a representative of the function

λ\ d1, . . . , dn.di ,

which exists by combinatorially completeness of (D, ·) (which one we
choose does not matter). For convenience, in case the variables xi oc-
curs more than once in x1, . . . , xn we choose the last such occurrence.
In case M ≡ P Q we can define

aP Q,~x := (λu, v, ~x.u ~x (v ~x))∗ · aP,~x · aQ,~x ,

where (λu, v, ~x.u ~x (v ~x))∗ is a representative of the function

λ\ a, b, ~d.a · ~d · (b · ~d)

which again exists by (1).
Now, back to the definition of [[ λx.P ]]σ . If we have defined aP,~x,x, then

aP,~x,x · σ(~x)

is one representative of the function

λd. [[ P ]]σd
x
(= λd.aP,~x,x · σ(~x) · d) .

(Note that because of our choice of interpretation of variables, if x ∈ ~x
the last occurrence of x overrides this occurrence of x ∈ ~x).
However, there are several representatives possible. By Berry’s extension-
ality property we know 2.11.8 that

λd. [[ P ]]σd
x

= λd. [[ Q ]]ρd
y
⇒ [[ λx.P ]]σ = [[ λy.Q ]]ρ ,
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which means that

aP,~x,x · σ(~x) ∼ aQ,~y,y · ρ(~y)⇒ [[ λx.P ]]σ = [[ λy.Q ]]ρ ,

i.e. in every model of the λ-calculus based on (D, ·) there is for every
d ∈ D at most one Λ(d) s.t.

[[ λx.P ]]σ = Λ(aP,~x,x · σ(~x)) ,

and we have

d ∼ d′⇒Λ(d) = Λ(d′) . (2)

On the other hand we have that

ax y,y,x · d · a = d · a

i.e.

ax y,y,x · d ∼ d ,

therefore in every equivalence class modulo ∼ of e there exists a d s.t. Λ(d)
is defined. Therefore Λ can be extended in a unique way to a function

Λ : D→D

s.t. (2) holds.
Therefore we get that for every semantic (D, ·, [[ · ]] ) there exists a unique

Λ : D→D

fulfilling (2) and s.t.

[[ λx.P ]]σ = Λ(aP,~x,x · σ(~x)) , (+)

and to every function

Λ : D→D
fulfilling (2) there exists at most one semantics fulfilling (+). (Note that
by (2) and (+) [[ λx.P ]]σ is uniquely determined already by [[ P ]]σd

x
(d ∈

D), since for all choices of aP,~x,x s.t. aP,~x,x · σ(~x) represents λd. [[ M ]]σd
x

Λ(aP,~x,x · σ(~x)) yields the same result.
What remains is to find out the remaining conditions on Λ needed s.t. it
corresponds to a semantics and to determine aλx.P,~x.
Since

[[ M ]]σ = Λ(aM,~x,x · σ(~x)) ∼ aM,~x,x · σ(~x)

and for every d d ∼ ax y,y,x · d, it follows

Λ(d) ∼ Λ(ax y,y,x) ∼ ax y,y,x ∼ d
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i.e.

Λ(d) ∼ d . (3)

Further we have

[[ λy.x y ]][x:=d] · a = [[ x y ]][x:=d,y:=a]

= d · a ,

therefore

[[ λy.x y ]][x:=d] ∼ d ,

[[ λy.x y ]][x:=d] = Λ(ax y,x,y · d)
= Λ(d)

Λ = λ\ d. [[ λy.x y ]][x:=d]

= [[ λx, y.x y ]] · d

therefore

∃e ∈ D.∀d ∈ D.e · d = Λ(d) . (4)

Once we have e according to (4) we can now define aλx.P,~x:

[[ λx.P ]]σ = Λ(aP,~x,x · σ(~x))
= e · (aP,~x,x · σ(~x))
= (λu, v, ~x.u (v ~x))∗ · e · aP,~x,x · σ(~x) ,

i.e. we can define

aλx.P,~x := (λu, v, ~x.u (v ~x))∗ · e · aP,~x,x ,

where (λu, v, ~x.u (v ~x))∗ is a representative of the function

λ\ a, b,~c.a · (b · ~c) .

We take now the conditions (1) - (4) as above as the definition of a syntax
free λ-model and verify then, although this is already almost implicitly
shown in the above discussion, that the new notion is equivalent to the
notion of a λ-model, we had before.

Definition 2.11.17 (11.19).
A syntax free λ-model or (if this does not cause confusion with the definition
above λ-model) is a tripel

(D, ·,Λ)

where

• (D, ·) is an applicative structure,

• Λ : D→D,
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s.t.

(a) (D, ·) is combinatorially complete,

(b) ∀a ∈ D.Λ(a) ∼ a,

(c) ∀a, b ∈ D.(a ∼ b⇒Λ(a) = Λ(b)),

(d) ∃e ∈ D.∀a ∈ D.e · a = Λ(a).

Definition 2.11.18 (11.20, first part)
Let (D, ·,Λ) be a syntax free λ-model. We define [[ · ]] s.t. (D, ·, [[ · ]] ) is a λ-model
as follows:
Let for every combination M of distinct variables x1, . . . , xn

(λx1, . . . , xn.M)∗

be an element in D representing this function.
Let e be s.t.

∀a ∈ D.e · a = Λ(a) .

First define for every term N , distinct variables x1, . . . , xn s.t.

FV(N) ⊆ {x1, . . . , xn}

an element

aN,x1,... ,xn
∈ D

by

(a)

axi,x1,... ,xn
:= (λx1, . . . , xn.xi)

∗

(b)

aN M,x1,... ,xn
:=

(λu, v, x1, . . . , xn.u x1 · · ·xn (v x1 · · ·xn))∗

· aN,x1,... ,xn
· aM,x1,... ,xn

i.e. aN M,x1,... ,xn
represents the function

λ\ d1, . . . , dn.aN,x1,... ,xn
· d1 · · · · · dn · (aM,x1,... ,xn

· d1 · · · · · dn) .

(c)

aλx.N,x1,... ,xn
:=

(λu, v, x1, . . . , xn.u (v x1 · · ·xn))∗ · e · aN,x1,... ,xn,x

i.e. aλx.N,x1,... ,xn
represents

λ\ d1, . . . , dn.e · (aN,x1,... ,xn,x · d1 · d2 · · · · · dn) .
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Then define, if FV(M) = {x1, . . . , xn}.

[[ M ]]σ := aM,x1,... ,xn
· σ(x1) · · · · · σ(xn) .

Theorem 2.11.19 (11.20, second part).
Definition 2.11.18 yields a λ-model.

Proof:
We first verify that the definition

[[ M ]]σ := aM,x1,... ,xn
· σ(x1) · · · · · σ(xn) .

is independent of the choice of distinct variables x1, . . . , xn, i.e. if

FV(M) ⊆ {x1, . . . , xn} ∩ {y1, . . . , ym}

then for all assignments

aM,~x · σ(~x) = aM,~y · σ(~y)

by induction on M .
Case M ≡ xi ≡ yj :

aM,~x · σ(~x) = σ(xi) = σ(yj) = aM,~y · σ(~y) .

Case M ≡ P Q:

aM,~x · σ(~x) = aP,~x · σ(~x) · (aQ,~x · σ(~x))
IH
= aP,~y · σ(~y) · (aQ,~y · σ(~y))
= aM,~y · σ(~x)

Case M ≡ λx.P :
By IH

∀d ∈ D.aP,~x,x · σ(~x) · d = aP,~y,x · σ(~y) · d ,

therefore
Λ(aP,~x,x · σ(~x)) = Λ(aP,~y,x · σ(~y))

and

aM,~x,x · σ(~x) = e · (aP,~x,x · σ(~x))
= Λ(aP,~x,x · σ(~x))
= Λ(aP,~y,x · σ(~y))
= e · (aP,~y,x · σ(~y))
= aM,~y,x · σ(~y) .

A similar proof (both assertions need to be shown simultaneously) shows

• M ≡α N⇒aM,~x = aN,~x
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• If FV(M) ⊆ {x1, . . . , xn}, yi distinct, then

aM,~x = aM [x1:=y1,... ,xn:=yn],~y .

Now we verify that we obtain a λ-model:

[[ x ]]σ = σ(x)

is obvious.

[[ P Q ]]σ = [[ P ]]σ · [[ Q ]]σ ,

follows by definition.
[[ λx.P ]]σ · d = [[ P ]]σd

x

[[ λx.P ]]σ · d = Λ(aP,~x,x · σ(~x)) · d
Λ(a)∼a

= aP,~x,x · σ(~x) · d
= [[ P ]]σd

x
.

[[ M ]]σ = [[ N ]]σ if σ � FV(M) = σ � FV(N)

is guaranteed by definition.

[[ λx.M ]]σ = [[ λy.(M [x := y]) ]]σ , if y 6∈ FV(M)

has been verified above.

λ\ d. [[ M ]]σd
x
∼ λ\ d. [[ N ]]σd

x
⇒ [[ λx.M ]]σ = [[ λx.N ]]σ .

By assumption
aM,~x,x · σ(~x) ∼ aN,~x,x · σ(~x)

therefore

[[ λx.M ]]σ = Λ(aM,~x,x · σ(~x)) = Λ(aN,~x,x · σ(~x)) = [[ λx.N ]]σ .

Theorem 2.11.20 (11.20, third part)
Let (D, ·, [[ · ]]) be a λ-model,

Λ := λ\ d. [[ λx.y x ]][y:=d] .

Then (D, ·,Λ) is a syntax free λ-model.

Proof: We verify the condition in Definition 2.11.4 (a) - (d):
(a): (D, ·) is combinatorially complete.
(b):

Λ(a) · d = [[ λx.y x ]][y:=a] · d
= [[ y x ]][y:=a,x:=d]

= a · d
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therefore
Λ(a) ∼ a .

(c):
If a ∼ b, then

[[ λx.y x ]][y:=a] · d = [[ y x ]][y:=a,x:=d]

= a · d
= b · d
= [[ λx.y x ]][y:=b] · d

therefore
Λ(a) = [[ λx.y x ]][y:=a] = [[ λx.y x ]][y:=b] = Λ(b) .

(d):
Let e := [[ λx, y.y x ]] . Then for all d ∈ D

e · d = [[ λy, x.y x ]] · d
= [[ λx.y x ]][y:=d]

= Λ(d) .

Theorem 2.11.21 The constructions in Definition 2.11.18 and Theorem 2.11.20
are inverse.

Proof:
Assume first a syntax free λ-modul (D, ·,Λ), let [[ · ]] be defined as in
Definition 2.11.18. Show, that the Λ′ obtained in Theorem 2.11.20 from
(D, ·, [[ · ]] ) is Λ:

Λ′(d) = [[ λx.y x ]][y:=d] = Λ(ay x,y,x · d) .
ay x,y,x · d · e = d · e ,

therefore
ay x,y,x · d ∼ d ,

Λ′(d) = Λ(ay x,y,x · d) = Λ(d) .

Assume now a free λ-modul (D, ·, [[ · ]]), let Λ be defined as in Theorem
2.11.20. Show, that the [[ · ]]

′
obtained in Definition 2.11.18 from (D, ·,Λ)

is [[ · ]] . Show [[ M ]]σ = [[ M ]]
′
σ by induction on M :

• M ≡ x: both sides yield σ(x).

• M ≡ P Q: IH.

• M ≡ λx.N :

[[ λx.M ]]′σ = Λ(aM,~x,x · σ(~x))
= [[ λy.x y ]][x:=aM,~x,x·σ(~x)] .



106 CHAPTER 2. λ-CALCULUS AND COMBINATORY LOGIC

Now for all d ∈ D

[[ x y ]][x:=aM,~x,x·σ(~x)]dy
= aM,~x,x · σ(~x) · d
IH
= [[ M ]]σd

x
,

therefore

[[ λx.M ]]
′
σ = [[ λy.x y ]][x:=aM,~x,x·σ(~x)]

= [[ λx.M ]]σ .

Theorem 2.11.22 (11.30)
If (D, ·) is an extensional combinatory algebra, and let

Λ : D→D, a 7→ a .

Then (D, ·,Λ) is a syntax free λ-model and the only one extending (D, ·).

Proof: Uniqueness follows, since every Λ has to select out of every equiv-
alence class modolu ∼ one element. The equivalence classes have one
element only, therefore Λ(a) = a.
With Λ as in the theorem follows immediately Λ(a) ∼ a, a ∼ b⇒Λ(a) ∼
Λ(b) and with e representing the identity we get e represents Λ.

2.11.3 Scott-Meyer λ-models (11.21 - 11.27)

Definition 2.11.17 can now be axiomatized as follows:

Definition 2.11.23 (11.21)
Syntax free λ-models can be formalized by the following set of axioms in the
language with a binary function symbol ·, written infix, and a unary function
symbol Λ:

(a) ∃k.∀a, b.k · a · b = a.

(b) ∃s.∀a, b, c.s · a · b · c = (a · c) · (b · c).

(c) ∀a, b.Λ(a) · b = a · b.

(d) ∀a, b.((∀d.a · d = b · d)→Λ(a) = Λ(b)).

(e) ∃e.∀a.e · a = Λ(a).

From the last axiom one can see, that we can replace Λ(a) by e ·a for some
constant e. However, whereas to every λ-model corresponds a unique Λ
s.t. we get a syntax free λ-model, there might be several e which represent
the same Λ. Only, if we add that e is strict, where strict is defined as
e · e = e, we get uniqueness. (Note that e strict in terms of Λ means
Λ(e) = e, i.e. e is the “canonical choice”).
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Definition 2.11.24 (11.22)

(a) Let (D, ·) be an applicative structure, e ∈ D. (D, ·, e) is called a loose
Scott-Meyer λ-model, iff

(a) (D, ·) is combinatorially complete.

(b) ∀a, b ∈ D.e · a · b = a · b.
(c) ∀a, b ∈ D((∀d.a · d = b · d)→e · a = e · b).

(b) A loose Scott-Meyer model (D, ·, e) is a strict Scott-Meyer λ-model iff

e · e = e .

Lemma 2.11.25 (approx. 11.23)

(a) If (D, ·, e), (D, ·, e0) are two strict Scott-Meyer model (with the same ap-
plicative structure (D, ·)) s.t. e ∼ e0, then e = e0.

(b) If (D, ·, e) is a Scott-Meyer model, e0 := e · e, then (D, ·, e0) is a strict
Scott meyer model s.t. e0 ∼ e (i.e. e0 corresponds to the same Λ as e).

Proof: (a).

e = e · e
= Λ(e)

e∼e0= Λ(e0)
= e0 · e0

= e0 .

(b): Λ(a) := e · a, then e0 = Λ(e) ∼ e,

e0 · e0 = Λ(Λ(e)) = Λ(e) = e0 .

Theorem 2.11.26 (a) Let (D, ·,Λ) be a syntax free λ-model, (D, ·, [[ · ]]) the
corresponding λ-model. Let

e := [[ λy, x.y x ]](= [[ 1 ]]) .

Then (D, ·, e) is a strict Scott-Meyer λ-model.

(b) If (D, ·, e) is a loose Scott-Meyer λ-model, Λ : D→D defined by

Λ(d) := e · d .

Then (D, ·,Λ) is a syntax free λ-model.

(c) The constructions in (a) and (b) are inverse bijections, if (b) is restricted
to strict Scott-Meyer models.
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(d) If we apply the construction (b) and then (a) to a loose Scott-Meyer model
(D, ·, e), we obtain a strict Scott-Meyer model (D, ·, e0) s.t. e0 ∼ e.

Proof:
(a) By Theorem 2.11.21 it follows that

Λ(a) = [[ λx.y x ]][y:=d] ,

therefore
Λ(a) = [[ λx, y, x y ]] · d,

and e := [[ 1 ]] fulfills the conditions of a loose Scott-Meyer model. Further
for this e it follows

e · e = [[ λx, y.x y ]] · [[ λx, y.x y ]]
= [[ (λx, y.x y)λx, y.x y ]]
= [[ λx, y.x y ]]
= e ,

therefore (D, ·, e) is actually strict.
(b): trivial.
(c): If we apply (a) and then (b), we obtain the syntax free λ-model
(D, ·,Λ), with

Λ′(a) = e · a = [[ λx.y x ]][y:=d] ,

where by Theorem 2.11.21 Λ(a) = Λ′(a).
If we apply (b) and then (a), we obtain a strict Scott-Meyer model

(D, ·, e0)

s.t. e0 represents Λ which is
a 7→ e · a

for the e of the original Scott-Meyer model. Therefore

e ∼ e0 .

From this it follows (d), and if we started with a strict Scott-Meyer model
by Lemma 2.11.25 it follows

e = e0 .

Remark 2.11.27 (11.26) Let (D, ·,Λ) be a syntax free λ-model, define

Repu : (D→repD)→D, Repu(f) = Λ(a) for a ∈ Rep(f) .

Since for b, c ∈ Rep(f), b ∼ c it follows that Repu is well-defined and

Repu ◦ Fun is the identity on D→repD .

Therefore Repu is a left inverse to Fun and D→repD is a retract of D.
The image of Repu is a subset F of D which contains of every equivalenceclass
of ∼ exactly one element.
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2.12 The λ-model D∞ (12)

2.12.1 Solutions of cpo-equations

We will in the following assume familiarity with cpo’s, as described in 12A
and 12B of [HS86].
The model D∞ we are going to construct will be a non-trivial cpo s.t.

D∞
∼= [D∞→D∞] .

Let α : D∞→[D∞→D∞] be the isomorphism. Then we can define for
a, b ∈ D∞

a · b := α(a)(b) .

We will then verify that
(D∞, ·)

is an extensional combinatory algebra (the extensionality is trivial, be-
cause α is an isomorphism), which can be (by defining Λ := id) extended
by Theorem 2.11.22 to a λ-model.
The construction generalizes very easily to solutions of more general cpo-
equations, and instead of restricting ourselves to the special case we treat
arbitrary solutions of cpo-equations. There is even a more general version
of this ([Set94, Str94]), which works for all cpo-enriched categories, where
a category C is cpo-enriched iff C(A,B) have a cpo structure s.t.

◦ : C(B,C)× C(A,B)→C(A,C) is continuous.

We restrict ourselves to ordinary cpos. The following is based on [Set94],
which is again based on [Str94].
First we need some extremely basic category theory:

Definition 2.12.1 (a) A category is a 6-tupel

C := (Obj,Mor, dom, cod, ◦, id)

s.t.

• Obj, Mor are classes (the elements of Obj are called objects and the
elements of Mor morphisms of the category C),

• dom, cod : Mor→Obj,

• f ◦ g ∈ Mor is defined for all f, g ∈ Mor s.t. cod(g) = dom(f),

• id : Obj→Mor,

where we write, if f ∈ Mor, A,B ∈ Obj,

f : A→B :⇔dom(f) = A ∧ cod(f) = B ,

and idA for id(A) and have the following laws:
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• dom(f ◦ g) = dom(g),

• cod(f ◦ g) = cod(f),

• dom(idA) = cod(idA) = A,

• h ◦ (g ◦ f) = (h ◦ g) ◦ f (if defined),

• if h : A→B, then idB ◦ h = h, h ◦ idA = h,

Let C(A,B) := {f ∈ Mor | f : A→B}.

(b) A bifunctor from a category

C = (ObjC ,MorC , domC , codC , ◦C, idC)

into a category

D = (ObjD,MorD, domD, codD, ◦D, idD) ,

abbreviated by
F : (Cop × C)→D ,

is a function
F : ObjC ×ObjC→ObjC

together with for every every A,A′, B,B′ ∈ ObjC , and f : A′→A, g :
B→B′ a morphism in D

F (f, g) : F (A,B)→F (A′, B′)

(where we use the same name for F (A,B) and F (f, g) s.t.

• F (idA, idB) = idF (A,B),

• if f : A′→A, f ′ : A′′→A′, g : B→B′, g′ : B′→B′′ then

F (f ′, g′) ◦ F (f, g) = F (f ◦ f ′, g′ ◦ g) .

Definition 2.12.2 (a) The category of cpo’s cpo consists of

• Obj: The class of cpo’s.

• Mor: The class of pairs (f,B), where f ∈ [dom(f)→B]. dom(f,B) =
dom(f), cod(f,B) = B. We will usually write f instead of (f,B).

• (g, C) ◦ (f,B) := (g ◦ f, C).

• idA := (λ\ d ∈ A.A,A).

(b) A bifunctor F : (cpoop × cpo)→cpo is locally continuous, iff for all cpo’s
A,A′, B,B′

F : [A′→A]× [B→B′]→[F (A,B)→F (A′, B′)]

is continuous.



2.12. THE λ-MODEL D∞ (12) 111

Lemma 2.12.3 (a) The bifunctor

F : (cpoop × cpo)→cpo

defined by
F (A,B) = B, F (f, g) = g

is a locally continuous bifunctor.

(b) If
F,G : (cpoop × cpo)→cpo

are locally continuous bifunctors, then

(F→G) : (cpoop × cpo)→cpo

is as well a locally continous bifunctor, where F→G is defined by

(F→G)(A,B) := [F (B,A)→G(A,B)] ,

and if
f : A′→A, g : B→B′, h : F (B,A)→G(A,B)

then

(F→G)(f, g)(h) := G(f, g) ◦ h ◦ F (g, f) : F (B′, A′)→G(A′, B′) .

(c) If (Fi) : (cpoop × cpo)→cpo are locally continuous bifunctors (i ∈ I), so
are

∏

i∈I

Fi : (cpoop × cpo)→cpo ,

defined by

(
∏

i∈I

Fi)(A,B) :=
∏

i∈I

(Fi(A,B)) ,

with componentwise ordering,

(
∏

i∈I

Fi)(f, g)((ai)i∈I) = (Fi(f, g)(ai))i∈I .

and ∑

i∈I

Fi : (cpoop × cpo)→cpo ,

defined by

(
∑

i∈I

Fi)(A,B) :=
∑

i∈I

(Fi(A,B)) ,

(disjoint union, with an additional ⊥ added)
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(
∑

i∈I

Fi)(f, g)(ιi(a)) = ιi(Fi(f, g)(a))

(where ιi are the canonical injections

Fi(A,B)→
∑

i∈I

Fi(A,B) ),

(
∑

i∈I

Fi)(f, g)(⊥) := ⊥ .

Proof: All easy.

Definition 2.12.4 Let D,D′ be cpo’s.
An embedding/projection pair is a pair

(e : D→D′, p : D′→D)

where

• D, D′ are cpo’s,

• e : D→D′, p : D′→D are continuous functions, s.t.

• p ◦ e = id,

• e ◦ p v id.

Remark 2.12.5 (a) If (e, p), (e, p′) are embedding/projection pairs, then p =
p′.

(b) If (e, p), (e′, p) are embedding/projection pairs, then e = e′.

(c) If (e, p) is an embedding/projection pair, then e, p are strict.

Bevis: (a):
p = id ◦ p = p′ ◦ e ◦ p v p′ ◦ id = p′ ,

similarly
p′ v p .

(b):
e = e ◦ p ◦ e′ v id ◦ e′ = e′ ,

similarly
e′ v e .

(c) p(⊥) v p(e(⊥)) = ⊥, therefore

p(⊥) = ⊥ .

e(⊥) = e(p(⊥)) v id(⊥) = ⊥,
e(⊥) = ⊥ .
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Lemma 2.12.6 Let (Dn)n∈N be a sequence of cpo’s,

(en : Dn→Dn+1, pn : Dn+1→Dn)

a sequence of embedding/projection pairs. Then there exists a cpo D and a
sequence of embedding/projection pairs

(in : Dn→D, ρn : D→Dn) ,

s.t.

(a) in+1 ◦ en = in.

(b) tn∈Nin ◦ ρn = idD.

Proof: Let
D := {u ∈

∏

n∈N

Dn | ∀n ∈ N.pn(un+1) = un} .

D is a cpo with componentwise ordering:

⊥D = ((⊥Dn
)n∈N) ∈ D ,

since by strictness of pn

pn(⊥Dn+1) = ⊥Dn
.

Assume B ⊆ D directed,

un := t{vn|v ∈ B} .

Then

pn(un+1) = pn(t{vn+1|v ∈ B})
= t{pn(vn+1)|v ∈ B}
= t{vn|v ∈ B} = un ,

therefore u ∈ D.
Further u ist the supremum of B in

∏
n∈N Dn, therefore as well in D.

Let for n < m

en,m := em−1 ◦ · · · ◦ en : Dn→Dm

pm,n := pn ◦ · · · ◦ pm−1 : Dm→Dn

and en,n := pn,n := IdDn
.

Define ρn : D→Dn, ρn(u) := un.
Define in : Dn→D,

(in(a))m :=

{
en,m(a) if n ≤ m
pn,m(a) if m ≤ n .

in(a) ∈ D:
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If n < m then

pm((in(a))m+1) = pm(en,m+1(a))
= pm ◦ em ◦ em−1 ◦ · · · ◦ en(a)
= em−1 ◦ · · · ◦ en(a) = en,m(a) = (in(a))m .

If m ≤ n then

pm((in(a))m+1) = pm(pn,m+1(a))
= pm ◦ pm+1 ◦ pm+2 ◦ · · · ◦ pn−1(a)
= pn,m(a)
= (in(a))m .

ρn is continuous, since it is monotone and for A ⊆ D directed

ρn(tA) = un = (tA)n

with u := tA.
in is continuous, since it is monotone and for A ⊆ D directed

(in(tA))m = en,m(tA) = ten,m(A) = t(in(A)m) = (tin(A))m ,

if n ≤ m and

(in(tA))m = pn,m(tA) = tpn,m(A) = t(in(A)m) = (tin(A))m ,

if m ≤ n.
Further

(in+1 ◦ en(u))m =

{
en+1,m ◦ en(u) n+ 1 ≤ m
pn+1,m ◦ en(u) m ≤ n

=

{
en,m(u) n+ 1 ≤ m
pn,m(u) m ≤ n

= (in(u))m ,
in+1 ◦ en = in .

For n ≥ m and u ∈ D it follows

((in ◦ ρn)(u))m = pn,m(un)
= pm ◦ · · · ◦ pn−1(un)
= um .

Therefore

(t(in ◦ ρn)(u)))m = tn≥m(in ◦ ρn(u))m

= tn≥mum = um ,
t(in ◦ ρn) = id .
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Remark 2.12.7 Let Dn, en, pn, d, in, ρn as in Theorem 2.12.6. Then it follows

(a) en = ρn+1 ◦ in.

(b) pn = ρn ◦ in+1.

(c) ρn = pn ◦ ρn+1.

(d) in+1 ◦ ρn+1 w in ◦ ρn.

(e) en,m = ρm ◦ in (n ≤ m).

(f) pn,m = ρm ◦ in.(m ≤ n).

Proof:
(a):

en = ρn+1 ◦ in+1 ◦ en

= ρn+1 ◦ in

(b):

(ρn ◦ in+1) ◦ en = ρn ◦ (in+1 ◦ en)
= ρn ◦ in = idDn

.
en ◦ (ρn ◦ in+1) = ρn+1 ◦ in ◦ ρn ◦ in+1

v ρn+1 ◦ in+1

= id .

Therefore (en, ρn ◦ in+1) is an embedding/projection pair. By uniqueness
it follows

ρn ◦ in+1 = pn .

(c):

(pn ◦ ρn+1) ◦ in = pn ◦ ρn+1 ◦ in+1 ◦ en

= pn ◦ en

= id ,
in ◦ (pn ◦ ρn+1) = in ◦ ρn ◦ in+1 ◦ ρn+1

v id ◦ id
= id .

Therefore

pn ◦ ρn+1 = ρn .

(d):

in+1 ◦ ρn+1 = in+1 ◦ id ◦ ρn+1

w in+1 ◦ en ◦ pn ◦ ρn+1

= in ◦ ρn .
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(e): We show immediately by induction for n ≤ m

im ◦ en,m = in ,

therefore

en,m = em−1 ◦ en,m−1

= ρm ◦ im−1 ◦ en,m−1

= ρm ◦ in , for m > n und
en,n = ρn ◦ in .

(f): For n > m we have

pn,m = pm ◦ · · · ◦ pn−1

= pm ◦ · · · ◦ pn−3 ◦ pn−2 ◦ ρn−1 ◦ in

= pm ◦ · · · ◦ pn−3 ◦ ρn−2 ◦ in

= pm ◦ · · · ◦ ρn−3 ◦ in

= · · · = ρm ◦ in

and for n = m
pn,m = id = ρm ◦ in .

Lemma 2.12.8 Assume

• F : (cpoop × cpo)→cpo is a locally continuous bifunctor,

• D0 is a cpo,

• (e0 : D0→F (D0, D0), p0 : F (D0, D0)→D0) is an embedding/projection
pair.

Then there exists

• a cpo D,

• an embedding/projection pair

(e : D0→D, p : D→D0)

together with

• an isomorphism (i.e. continuous bijection)

β : F (D,D)
∼=−→ D .

Proof:
Define inductively cpo’s Dn for n ≥ 1 by

Dn := F (Dn−1, Dn−1) ,

and simultaneously for n ≥ 1 inductively
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• en := F (pn−1, en−1)

• pn := F (en−1, pn−1).

Then
pn ◦ en = idDn

:

n = 0 is clear and

pn+1 ◦ en+1 = F (en, pn) ◦ F (pn, en)
= F (pn ◦ en, pn ◦ en)
IV
= F (id, id) = id .

Further
en ◦ pn v idDn+1 :

e0 ◦ p0 v idD1 ,
en+1 ◦ pn+1 = F (pn, en) ◦ F (en, pn)

= F (en ◦ pn, en ◦ pn)
IH

v F (id, id) = id .

Therefore (en, pn) is a sequence of embedding/projection pairs.

By Lemma 2.12.6 there exists a cone of embedding/projection pairs

in : Dn→D, ρn : D→Dn

s.t.

• in+1 ◦ en = in,

• pn ◦ ρn+1 = ρn,

• t(in ◦ ρn) = idD.

Therefore

in+1 ◦ F (in, ρn) = in+1 ◦ F (in+1 ◦ en, pn ◦ ρn+1)

= in+1 ◦ F (en, pn) ◦ F (in+1, ρn+1)

= in+1 ◦ pn+1 ◦ F (in+1, ρn+1)

= in+2 ◦ en+1 ◦ pn+1 ◦ F (in+1, ρn+1)

v in+2 ◦ id ◦ F (in+1, ρn+1)

= in+2 ◦ F (in+1, ρn+1)

F (ρn, in) ◦ ρn+1 = F (pn ◦ ρn+1, in+1 ◦ en) ◦ ρn+1

= F (ρn+1, in+1) ◦ F (pn, en) ◦ pn+1 ◦ ρn+2

= F (ρn+1, in+1) ◦ en+1 ◦ pn+1 ◦ ρn+2

v F (ρn+1, in+1) ◦ id ◦ ρn+2

= F (ρn+1, in+1) ◦ ρn+2



118 CHAPTER 2. λ-CALCULUS AND COMBINATORY LOGIC

Therefore there exists

β := t(in+1 ◦ F (in, ρn)) ,
α := tF (ρn, in) ◦ ρn+1 .

and we get

β ◦ α = tn,m∈Nin+1 ◦ F (in, ρn) ◦ F (ρm, im) ◦ ρm+1

= tn,m∈Nin+1 ◦ F (ρm ◦ in, ρn ◦ im) ◦ ρm+1

= tn,m∈Nin+1 ◦ F (
en,m
pn,m,

pm,n
em,n) ◦ ρm+1

= tn,m∈Nin+1◦ pm+1,n+1
em+1,n+1 ◦ρm+1

= tn∈Nin+1 ◦ ρn+1

= id

α ◦ β = tn,m∈NF (ρn, in) ◦ ρn+1 ◦ im+1 ◦ F (im, ρm)

= tn,m∈NF (ρn, in)◦ pm+1,n+1
em+1,n+1 ◦F (im, ρm)

= tn,m∈NF (ρn, in) ◦ F (
en,m
pn,m,

pm,n
em,n) ◦ F (im, ρm)

= tn,m∈NF (id, id)

= id

Therefore β is an isomorphism, α = β−1.

2.12.2 D∞ and other λ-models

Definition 2.12.9 (a) D∞ is defined as the in Lemma 2.12.8 constructed cpo
where

• F (A,B) := A→B, F (g, f)(h) := f ◦ h ◦ g.
• D0 := N⊥.

• e0(n) := λ\m.n, p0(f) := f(⊥).

(b) Let α : D∞→[D∞→D∞] be the isomorphism, β its inverse.

Define · : D∞ ×D∞→D∞, a · b := α(a)(b).

Define Λ := idD∞ : D∞→D∞.

Theorem 2.12.10 (D∞, ·,Λ) is a λ-model.

Proof:
Let

k := β(λ\ a.β(λ\ b.a))
s := β(λ\ a.β(λ\ b.β(λ\ c.α(α(a)(c))(α(b)(c))))
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k, s are well-defined and

k · a · b = α(α(β(λ\ a.β(λ\ b.a)))(a))(b)
= α(β(λ\ b.a))(b)
= a ,

s · a · b · c
= α(α(α(β(λ\ a.β(λ\ b.β(λ\ c.α(α(a)(c))(α(b)(c))))))(a))(b))(c)
= α(α(β(λ\ b.β(λ\ c.α(α(a)(c))(α(b)(c)))))(b))(c)
= α(α(a)(c))(α(b)(c))
= a · c · (b · c) .

(D∞, ·) is extensional, since if a ∼ b, then

∀c ∈ D∞.α(a)(c) = a · c = b · c = α(b)(c)

α(a) = α(b) ,

a = b .

Therefore by Theorem 2.11.22

(D∞, ·, λ\ d.d)

is a λ-model.

Remark 2.12.11 In the above we could have replaced N⊥ by any other (non-
trivial) cpo. All the proofs above remain as before.

Definition 2.12.12 Let D := D∞, Dn as in the construction of D∞, i.e.

• D0 := N⊥,

• Dn+1 := F (Dn, Dn), where

• F (D,E) = [D→E], F (g, f)(h) = f ◦ h ◦ g.

For σ being an assignment of variables in D, M a λ-terms define [[ M ]]
n
σ ∈ Dn

as follows:

• [[ x ]]
n
σ := ρn(σ(x)).

• [[ M N ]]
n
σ := [[ M ]]

n+1
σ ([[ N ]]

n
σ).

• [[ λx.M ]]
0
σ := p0(λ\ d ∈ D0. [[ M ]]

0

σ
i0(d)
x

),

[[ λx.M ]]
n+1
σ := λ\ d ∈ Dn. [[ M ]]

n

σ
in(d)
x

.

(where one simultaneously shows immediately, that

λ\ d1, . . . , dm ∈ D. [[ M ]]
n

σ
d1
x1

d2
x2
···dm

xm

∈ [Dm→Dn] ).
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Lemma 2.12.13 Let M be a λ-term, σ be an assignment.

(a) in([[ M ]]
n
σ) v in+1([[ M ]]

n+1
σ ).

(b) [[ M ]]σ = tn∈Nin([[ M ]]
n
σ).

Proof:
Let

α := t(F (ρn, in) ◦ ρn+1) : D→F (D,D)
β := t(in+1 ◦ F (in, ρn)) : F (D,D)→D

the inverse isomorphisms.
We prove both (a) and (b) by induction on M :
Case M ≡ x:

in([[ M ]]
n
σ) = in(ρn(σ(x)))

= (in ◦ ρn)(σ(x)) .

Therefore it follows (a) by

in ◦ ρn v in+1 ◦ ρn+1

and (b) by
tn∈Nin ◦ ρn = id .

Case M ≡ P Q:

in([[ P Q ]]n
σ)

= in([[ P ]]n+1
σ ([[ Q ]]n

σ))

= in((ρn+1(in+1([[ P ]]n+1
σ )))(ρn(in([[ Q ]]n

σ))))

= (in ◦ ρn+1(in+1([[ P ]]
n+1
σ )) ◦ ρn)(in([[ Q ]]

n
σ))

= (F (ρn, in) ◦ ρn+1)(in+1([[ P ]]
n+1
σ ))(in([[ Q ]]

n
σ))

Let
g(n,m, k) := (F (ρn, in) ◦ ρn+1)(im+1([[ P ]]

m+1
σ ))(ik([[ Q ]]

k
σ)) .

Then g(n,m, k) is monotone in n, m, k. Therefore

in([[ P Q ]]
n
σ) = g(n, n, n)
v g(n+ 1, n+ 1, n+ 1)

= in+1([[ P Q ]]
n+1
σ ) ,

and

tnin([[ P Q ]]
n
σ)

= tng(n, n, n)
= tn,m,kg(n,m, k)

= (tn(F (ρn, in) ◦ ρn+1))(tm(im+1([[ P ]]m+1
σ )))(tk(ik([[ Q ]]k

σ)))
= α([[ P ]]σ)([[ Q ]]σ) .
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Case M = λx.P .

i0([[ λx.P ]]
0
σ) = i0(p0(λ\ d ∈ D0. [[ P ]]

0

σ
i0(d)
x

))

= i1(λ\ d ∈ D0. [[ P ]]
0

σ
i0(d)
x

)

= i1([[ λx.P ]]
1
σ) .

Further
in+1([[ λx.P ]]n

σ)
= in+1(λ\ d ∈ Dn. [[ P ]]

n

σ
in(d)
x

)

= in+1(λ\ d ∈ Dn.ρn(in([[ P ]]
n

σ
in(d)
x

)))

= in+1(ρn ◦ (λ\ d ∈ D.in([[ P ]]
n
σd

x
)) ◦ in)

= (in+1 ◦ F (in, ρn))(λ\ d ∈ D.in([[ P ]]n
σd

x
)) .

By

in([[ P ]]
n
σd

x
) v in+1([[ P ]]

n+1
σd

x
)

therefore

λ\ d ∈ D.in([[ P ]]n
σd

x
) v λ\ d ∈ D.in+1([[ P ]]n+1

σd
x

)

further
in+1 ◦ F (in, ρn) v in+2 ◦ F (in+1, ρn+1)

therefore

in+1([[ λx.P ]]
n
σ) v in+2([[ λx.P ]]

n+1
σ )

Further by the monotonicity just mentioned it follows

tnin+1([[ λx.P ]]
n
σ)

= (tn(in+1 ◦ F (in, ρn)))(tm(λ\ d ∈ D.im([[ P ]]m
σd

x
)))

= β(λ\ d ∈ D. [[ P ]]σd
x
)

= Λ(β(λ\ d ∈ D. [[ P ]]σd
x
))

= [[ λx.P ]]σ .

We can easily define a non-extensional λ-model as well:

Definition 2.12.14 Let

D +E := Σi∈{0,1}Di

where
D0 := D, D1 := E .

Let ιi : Di→D0 +D1, be the two canonical embeddings.
Let D be a non-trivial solution of the cpo-equation

D ∼= [D→D] + [D→D] .

α : D→([D→D] + [D→D])
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be the isomorphism and β its inverse.
Define

a · b := f(b), if α(a) = ιi(f) .

Let
Λi : D→D, Λi(e) = β(ιi(f)) if α(e) = ιk(f) .

Then (D, ·,Λi) are two structures which fulfill conditions (a) - (c) of Definition
2.11.17. Further for j = 0, 1

ej,i := β(ιj(Λi))

are two different choices of e s.t. condition (d) is fulfilled as well, i.e.

(D, ·,Λi)

are two λ-models based on the same combinatory algebra, which are both not
extensional and have each at least two possible solutions for e.

2.13 The typed λ-Calculus

We will in the following introduce the typed λ-calculus and prove strong
normalization of it. In the next section, we will introduce the Curry-
Howard isomorphism and show, how to prove normalization of intuition-
istic predicate logic from normalization of the typed λ-calculus.
It will turn out, that the type σ→τ corresponds to A→B and ∀x.A, and
prime formulas of minimal logic to the ground type o. Other formula
constructions will correspond to other types:

• A ∨ B will correspond to a type σ + τ which corresponds to the disjoint
union of the types σ and τ .

• A ∧ B will correspond to a type σ ×0 τ , and ∃x.A will correspond to a
product type σ×1 τ , where ×0 and ×1 will be two choices of product types
which differ in the choice of the elimination rule.

• Further for the ⊥ we need a new type ∅.

We will in the following follow partly [MJ98].
For the new types new λ-terms have to be introduced.

Definition 2.13.1 (a) The set of types Type is inductively defined by

• ∅, o ∈ Type.

• If σ, τ ∈ Type, then σ→τ, σ ×0 τ, σ ×1 τ, σ + τ ∈ Type.

In the following σ, ρ, τ , possibly with sub/superscripts and/or accents de-
note elements of Type.
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(b) We define inductively the set of terms Term together with their types.
Here sσ or s : σ means: s is a term of type σ. There are infinitely many
variables xσ for every σ given. In the following x, y, z, u, v denote variables
possibly with subscripts and/or indides, and xσ , yσ, zσ, uσ, vσ (again with
accents or subscrips) denote variables of type σ.

• xσ is a term of type σ.

• If r, s are terms of types as given by their superscripts below, then

– (λxσ .sτ )σ→τ ,

– 〈rσ , sτ 〉σ×iτ
i , (i = 0, 1)

– (ι0,τr
σ)σ+τ ,

– (ι1,τr
σ)τ+σ ,

– (rσ→τ sσ)τ ,

– (rσ×0τ 0)σ ,

– (rσ×0τ 1)τ ,

– (rσ×1τ [λxσ , yτ .sρ])ρ,

– (rσ+τ [λxσ .sρ, λyτ .tρ])ρ

– (r∅ efqσ)σ

are terms of the type indicated by the superscript.

The length (lgh(s)) of a term s is the number of steps in the above defini-
tion needed in order to derive that s is a term.

Brackets are omitted as usual.

The type index in ιi,τ , and efqσ is only needed to make the typing of a
term unique, and will be usually omitted.

In the following all λ-terms occurring are assumed to be elements of Term,
if [λx, y.s] occurs, s is assumed to be a term of the corresponding type,
and if [λx.s, λy.t] occurs, s, t are typed terms of the corresponding type.

(c) Good elimination terms are terms, 0, 1. Term0,1 is the set of good elimi-
nation terms.

For A ⊆ Term let A0,1 := A ∪ {0, 1}.
In the following r, s, t possibly with sub/superscripts, accents denote terms,
~r, ~s,~t with the same extensions denote sequences of terms, unless they are
stated as elements of a set of terms or sequences of terms extended by 0, 1,
in which case they are good elimination terms.

Elimination terms are good elimination terms, efqσ, [λx.r, λy.s] and [λx, y.r].

In the following R,S, T with the usual extensions denote elimination terms
and ~R, ~S, ~T with the same extensions denote sequences of elimination
terms.

(d) Free, bounded variables, substitution, α-conversion is defined as usual.
We will in the following identify α-equivalent terms.
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(e) A∗ is the set of finite (possibly empty) sequences of elements of A.

(f) The reduction relation −→⊆ Term× Term is inductively defined by

• (λx.r) s −→ r[x := s],

• 〈r0, r1〉0 i −→ ri,

• 〈r0, r1〉1 [λx0, x1.s] −→ s[x0 := r0, x1 := r1],

• ιi(r) [λx0.s0, λx1.s1] −→ si[xi := r].

• (r efqσ S)ρ −→ r efqρ.

• r [λx, y.s] S −→ r [λx, y.s S] (x, y 6∈ FV(S)).

• r [λx.s, λy.t] S −→ r [λx.s S, λy.t S] (x, y 6∈ FV(S)).

(The last three reductions are called “permutative conversions”).

• If r −→ r′ then

– λx.r −→ λx.r′,

– 〈r, s〉i −→ 〈r′, s〉i,
– 〈s, r〉i −→ 〈s, r′〉i,
– ιi(r) −→ ιi(r

′),

– r S −→ r′ S,

– s r −→ s r′,

– s [λx, y.r] −→ s [λx, y.r′],

– s [λx.r, λy.t] −→ s [λx.r′ , λy.t],

– s [λx.t, λy.r] −→ s [λx.t, λy.r′].

(g) −→∗ is the reflexive transitive closure of −→.

Remark 2.13.2 (a) λx.s, 〈r, s〉i, ιi(r) introduce new elements of the corre-
sponding type. Therefore these constructions are called introductions. r s,
r i, r efqσ, r [λx, y.s], r [λx.s, λy.t], correspond to the formation of a new
element of a different type from r, and one says that one eliminates r.
Therefore these constructions are called eliminations.

(b) The notations for the elimination of +, ×1 and ∅ are non-standard. Standard-
notations are for (the choice of letters C, E, efq varies)

E(r, (x, y)s) for r [λx, y.s] ,
C(r, (x)s, (y)t) for r [λx.s, λy.t] ,

efqσ(r) for r efqσ .

We use our notations because it will simplify the following proofs quite a
lot: successive eliminations applied to a term r can be written as r ~S.

Theorem 2.13.3 −→ is Church-Rosser.

Proof: As before.
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Lemma 2.13.4 (a) If r −→ r′ then

r[x := s] −→ r′[x := s] .

(b) If s −→ s′, then
r[x := s] −→∗ r[x := s′] .

Proof: Easy.

A term is strongly normalizing, if every reduction sequence terminates. A
better way of defining normalizing is the following.

Definition 2.13.5 (a) We define inductively the subset SN of strongly nor-
malizing terms by:

∀r′.(r→r′⇒r′ ∈ SN)⇒r ∈ SN .

(b) For s ∈ SN0,1 define height(s) by:

r ∈ SN ⇒ height(r) = max({height(r′) + 1 | r −→ r′}
∪ {0}) ,

height(0) := height(1) := 0 .

We note that α-equivalent terms have the same height and that, since a
term reduces only (up to α-equivalence) to finitely many terms, the height
of elements of SN0,1 is finite.

Proof that the strongly normalizing terms are exactly those s.t. every
reduction sequence terminates:
First it follows immediately by induction on s that if s ∈ SN then every
reduction sequence terminates after at most height(s) reductions.
On the other hand, assume s 6∈ SN. Define a sequence s = s0 −→ s1 −→
s1 −→ · · · s.t. for all n sn 6∈ SN as follows: s0 := s. sn+1 is the (w.r.t
the Gödelnumbering) least term s.t. sn −→ sn+1, sn+1 6∈ SN. s is not
normalizing in the original sense.

Remark 2.13.6 If r ∈ SN, r −→ r′, then height(r′) < height(r).

Definition 2.13.7 We define inductively the subset terms in S̃N, where ~r ∈
S̃N

∗

0,1. S̃N is defined by the following rules (i.e. if the premisses are fulfilled the
conclusion holds).
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(Var0) ~r ∈ S̃N
∗

0,1

x ~r ∈ S̃N

(Var1) ~r ∈ S̃N
∗

0,1 yσ ~S ∈ S̃N

x ~r efqσ
~S ∈ S̃N

(Var2) ~r ∈ S̃N
∗

0,1 s ~S ∈ S̃N

x ~r [λx, y.s] ~S ∈ S̃N

(Var3) ~r ∈ S̃N
∗

0,1 s ~S ∈ S̃N t ~S ∈ S̃N

x ~r [λx.s, λy.t] ~S ∈ S̃N

(λ0) r ∈ S̃N

λx.r ∈ S̃N

(〈〉0i ) r ∈ S̃N s ∈ S̃N

〈r, s〉i ∈ S̃N

(ι0) r ∈ S̃N

ιi(r) ∈ S̃N

(λ1) r[x := s] ~S ∈ S̃N s ∈ S̃N

(λx.r) s ~S ∈ S̃N

(〈〉10) ri ~S ∈ S̃N r1−i ∈ S̃N

〈r0, r1〉0 i ~S ∈ S̃N

(〈〉11) s[x0 := r0, x1 := r1] ~S ∈ S̃N r0 ∈ S̃N r1 ∈ S̃N

〈r0, r1〉1 [λx0, x1.s] ~S ∈ S̃N

(ι1) si[xi := r] ~S ∈ S̃N s1−i ∈ S̃N r ∈ S̃N

ιi(r) [λx0.s0, λx1.s1] ~S ∈ S̃N

The length of a derivation of r ∈ S̃N (lgh
S̃N

) is the number of rules needed for

deriving r ∈ S̃N.

This extends to r ∈ S̃N0,1 by lgh
S̃N

(0) := lgh
S̃N

(1) := 0.

Lemma 2.13.8

r ∈ SN⇔r ∈ S̃N

Remark: For the proof of the strong normalization theorem only ⇒ is
really needed (we will prove that all typed terms are in S̃N and therefore
in SN), although we will for convenience make use of that fact. But it is

interesting to see that S̃N is just another definition of SN.

Proof:
“⇒” (Soundness) We show for all rules of S̃N:

• If the premise holds with S̃N, S̃N0,1 replaced by SN, SN0,1,

• then the conclusion holds as well with the same replacement.
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This will be proved for all rules by induction on the sum of the heights
of the terms and elimination terms in the premise, and in case of (Var1),
(Var2), (Var3), (〈〉11), (ι1) by side-induction on the number of elimination

terms in ~S.
Case (Var0): If x ~r −→ t then t ≡ x ~r0 ri ~r1 with ~r ≡ ~r0 r′i ~r1 and
ri −→ r′i. By IH t ∈ SN.
Cases (Var1), (Var2), (Var3), (λ0), (〈〉0i ), (ι0): Again if the concluding term
reduces to t, t can be derived by the same rule with sum of the heights
of the premises smaller, or in the main case of a permutative conversion
in (Vari) by the same rule with the same premises (or with height ≤ the

height of a premise), but with shorter ~S. By IH follows t ∈ SN.
Cases (λ1), (〈〉1i ), (ι1): If the concluding term reduces to t, t is either the
first premise, or (using Lemma 2.13.4) it can be derived by the same rule
with sum of the heights of the premises smaller, or it is the result of a
permutative conversion with the elimination term explicitely written in
case (〈〉1i ), (ι1), and can be derived by the same rule, but with reduced

length of ~S. Therefore by main or side-IH t ∈ SN.

“⇐” (Completeness) We show for all rules by induction on the height of
the concluding term:

• If the conclusion holds with S̃N replaced by SN, then the premise holds
with S̃N, S̃N0,1 replaced by SN, SN0,1.

• If s is the term in the conclusion and r a term in the premise, then

height(r) < height(s) ∨ (height(r) = height(s) ∧ lgh(r) < lgh(s)) .

Since every term is the conclusion of one rule follows than by induction
on height(s), side-induction on lgh(s)

s ∈ SN⇒s ∈ S̃N .

Case (Vari), (λ0), (〈〉0i ), (ι0): The height of the premises will be less than
or equal the height of the conclusion and the length of them is less than
the length of the concluding term:
For the length this is clear and if for a premise r we have r −→ r′, than
for the conclusion s there is a term s′ s.t. s −→ s′ and s′ can be derived
from the same premises or a reduct of them and from r′. By IH these new
premises are in SN0,1, therefore r′ ∈ SN and therefore r as well and the
assertion concerning the height follows.

Case (λ1), (〈〉1i ), (ι1): The first premise is a reduct of the conclusion
therefore an element of SN with smaller height.
The other premises have height less than or equal the conclusion and
smaller length, by the same proof as before, using Lemma 2.13.4.

Lemma 2.13.9 (a) If t ∈ {(λx.r), ιi(r), 〈r, s〉i, 〈s, r〉i, r ~R, s r, s [λx, y.r],

s [λx.r, λy.r′], s [λy.r′, λx.r]}, t ∈ S̃N, then r ∈ S̃N.
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(b) r ∈ S̃N⇔r[x := y] ∈ S̃N.

Proof: (a) t ∈ S̃N, then t ∈ SN, and every reduction in r corresponds to a

reduction in t, therefore by induction on height(t) it follows r ∈ SN = S̃N.

(Induction on t ∈ S̃N is as well possible, but then one needs to prove as

well: r[x := s] ∈ S̃N⇒r ∈ S̃N).

(b) Induction on the derivation of r ∈ S̃N or r[x := y] ∈ S̃N.

Lemma 2.13.10 For all types ρ and all r ∈ S̃N it follows

(a) If ρ ≡ ρ0→ρ1, r : ρ, s ∈ S̃N, then r s ∈ S̃N.

(b) If ρ ≡ ρ0 ×0 ρ1, r : ρ then r 0, r 1 ∈ S̃N.

(c) If ρ ≡ ∅, r : ρ, y ~T ∈ S̃N, then r efqσ
~T ∈ S̃N.

(d) If ρ ≡ ρ0 ×1 ρ1, r : ρ, t ~T ∈ S̃N, then r [λx0, x1.t] ~T ∈ S̃N.

(e) If ρ ≡ ρ0 + ρ1, r : ρ, t0 ~T , t1 ~T ∈ S̃N, then r [λx0.t0, λx1.t1] ~T ∈ S̃N.

(f) If sρ ∈ S̃N then r[xρ := sρ] ∈ S̃N.

Proof: We prove (a) - (f) simultaneously by induction on ρ:
Proof of (a) - (e) simultaneously by side-induction on r. Let the con-

clusion be r ~R ∈ S̃N:
Case r ≡ x ~r: r ∈ S̃N is derived by (Var0). (a), (b) follows by (Var0), (c)
by (Var1), (d) by (Var2) (e) by (Var3).

Case r ≡ x ~r [λx0, x1.s] ~S: then r ∈ S̃N is derived by (Var2) from

ri ∈ S̃N0,1, s ~S ∈ S̃N. The type of s ~S is the same as that of r and it

is derived as an element of S̃N before r, therefore by side-IH it follows
s ~S ~R ∈ S̃N and therefore r ~R ∈ S̃N.
Case r ≡ x ~r efqσ

~T or r ≡ x ~r [λx0.s0, λx1.s1] ~S: similarly.
Case r ≡ λx.r′ derived by (λ0). Only (a) is possible, by main IH for (f)

it follows r′[x := s] ∈ S̃N and therefore by (λ1) r s ∈ S̃N.
Case r ≡ 〈r0, r1〉0 derived by (〈〉00). Only (c) is possible, and the conclusion
follows by (〈〉10).
Case r ≡ 〈r0, r1〉1 derived by (〈〉01): Only (d) is possible. By Lemma 2.13.9

(b) w.l.o.g. xi 6∈ FV(~T ). Now we have

• ri ∈ S̃N.

• By t ~T ∈ S̃N, ri having type ρi smaller than ρ, main IH for (f) it follows

t[x0 := r0, x1 := r1] ~T ≡ (t ~T )[x0 := r0, x1 := r1] ∈ S̃N.

Therefore by (〈〉11) it follows r ~R ∈ S̃N.
Case r ≡ ιi(r

′) derived by (ι0): Similarly, but we use additionally that

from t1−i
~T ∈ S̃N it follows t1−i ∈ S̃N.
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Case r ∈ S̃N derived by (λ1), (〈〉1i ), (ι1). By side-IH follows the first

premise for deriving r ~R ∈ S̃N, the other premises are the same as for
r ∈ S̃N, therefore r ~R ∈ S̃N.

Proof for (f) by side-induction on r: We will additionally use that (a) -
(e) is proved for ρ by the proof before.

Case r ≡ y r1 · · · rn, ri ∈ S̃N. By side-IH

ri[x := s] ∈ S̃N .

If x 6≡ y follows the assertion by (Var0), and if x ≡ y it follows by (a), (b),
where we use the main IH or the just proved assertion for ρ.
Case r ≡ y r1 · · · rn [λx0, x1.t] ~S derived from ri ∈ S̃N0,1, s ~S ∈ S̃N.
W.l.o.g. xi 6≡ x.
By main IH

ri[x := s] ∈ S̃N0,1 ,

and by side-IH
t ~S[x := s] ∈ S̃N .

If x 6≡ y follows by (Var2) the assertion and if x ≡ y it follows by (a) - (e),
where we use the main IH or the just proved assertion for ρ.
Case r ≡ y r1 · · · rn [λx0.s0, λx1.s1] ~S, r ≡ y r1 · · · rn efqσ

~S: Similarly.
All other cases follow immediately by side-IH for (f).

Theorem 2.13.11 r ∈ SN.

Proof: By induction on the length of r using Lemma 2.13.10.

Definition 2.13.12 (a) A term r is in normal form iff ¬∃r′.r −→ r′.

(b) The set of terms NF is inductively defined as:

• x ∈ NF.

• If ri, s, t ∈ NF0,1, so are

– x r1 · · · rn,

– x r1, . . . , rn efq,

– x r1 · · · rn [λy, z.s] and

– x r1 · · · rn [λy.s, λz.t].

• If r, s ∈ NF, so are
λx.s, 〈r, s〉i, ιi(r) .

Lemma 2.13.13 r ∈ NF iff r is in normal form.

Remark: This means that terms in normal form are those which are the
result of applying successively introduction steps to terms which are the
result of applying successively eliminations to variables, where only the
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last elimination is an +-elimination, and such that for all terms used in
eliminations the same holds.
Proof of Lemma 2.13.13:
“⇒”: immediate.
“⇐”: Induction on lgh(r). If

r = λx.r′, ιi(r
′) ,

by IH r′ ∈ NF, r ∈ NF. If
r = 〈r′, s′〉i ,

by IH r′, s′ ∈ NF, r ∈ NF. Otherwise

r = r0 R1 · · ·Rn ,

s.t. r0 is not of the form
s S .

Then r0 must be a variable,

R0, . . . , Rn−1 ∈ Term0,1 ,

Ri ∈ NF0,1(i=0 , . . . , n-1) ,

Rn ∈ NF0,1 or Rn ≡ efq or
Rn ≡ [λx, y.s] or Rn ≡ [λx.s, λy.t] with s, t ∈ NF ,

r ∈ NF .

Definition 2.13.14 (a) A term in normal form is in long η-normal form, iff
for all maximal subterms of the form

s = x r1 · · · rn R

it holds that

s : o or s : ∅ or R is of the form efq, [λx, y.t] or [λx.t0, λy.t1] .

(b) The set of terms η −NF is inductively defined as:

• If ri ∈ (η − NF)0,1 (i = 1, . . . , n), x r1 · · · rn : σ where σ ∈ {o, ∅},
then

x r1 · · · rn ∈ (η −NF) .

• If ri, s, t ∈ (η −NF)0,1, then

x r1 · · · rn efq, x r1 · · · rn [λx, y.s], x r1 · · · rn [λy.s, λz.t] ∈ η −NF .
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• If r, s ∈ η −NF, so are

λx.s, 〈r, s〉i, ιi(r) ∈ η −NF .

(c) For terms of the form r ≡ x r1 · · · rn with ri ∈ Term0,1, r : ρ we define
exp(r) by induction on ρ by:

• If ρ = 0 or ρ = ∅, then exp(r) := r.

• If ρ = σ→τ , then exp(r) := λx.exp(r exp(x)) for a new variable x.

• If ρ = σ ×0 τ , exp(r) := 〈exp(r 0), exp(r 1)〉0
• If ρ = σ ×1 τ , exp(r) := r [λx, y.〈exp(x), exp(y)〉1].
• If ρ = σ + τ , exp(r) := r [λx.ι0(exp(x)), λx.ι1(exp(x))].

(d) We define for terms r in normal form by induction on the length of r the
η-expansion rη :

• (x r0 · · · rn)η := exp(x rη
0 · · · rη

n).

• (x r0 · · · rn efq)η := x rη
0 · · · rη

n efq.

• (x r0 · · · rn [λx, y.s])η := x rη
0 · · · rη

n [λx, y.sη].

• (x r0 · · · rn [λx.s, λy.t])η := x rη
0 · · · rη

n [λx.sη , λy.tη ].

• (λx.r)η := λx.rη .

• 〈r, s〉ηi := 〈rη , sη〉i.
• ιi(r)η := ιi(r

η).

Lemma 2.13.15 (a) r is in long η-normal form if r ∈ η −NF.

(b) If r ≡ x r1 · · · rn, ri ∈ (η −NF)0,1, then exp(r) ∈ η −NF.

(c) If r is in normal form, then rη ∈ η −NF.

Proof: Easy

Remark: η-reductions can now be defined for terms in normal form as
follows: Take a maximal subterm of r of the form

s ≡ x r0 · · · rn R : ρ .

Assume that then R ∈ Term0,1 and ρ is not a type o or ∅. Then replace
s by

• λx.s x för x fresh,

• 〈s 0, s 1〉0,
• s [λx, y.〈x, y〉1] or

• s [λx.ι0(x), λx.ι1(x)]

(depending on the type of s).
One can show now that η-reductions reduce a term t to its long η-normal
form tη.
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2.14 The Curry-Howard Isomorphism

Assumption 2.14.1 In the following let L be some language for intuitionistic
predicate logic.

Definition 2.14.2 (a) For every formula A in L we assign some type σ(A)
(where ¬A is an abbreviation for A→⊥):

• If A is prime, A 6≡ ⊥, then σ(A) := o.

• σ(⊥) := ∅.
• σ(A→B) := σ(A)→σ(B).

• σ(A ∨B) := σ(A) + σ(B).

• σ(A ∧B) := σ(A) ×0 σ(B).

• σ(∀x.A) := o→σ(A).

• σ(∃x.A) := o×1 σ(A).

(b) We assume an assignment of either a formula A s.t. σ(A) = σ or, if σ = o,
the symbol nat, or if

σ = o→· · ·→o︸ ︷︷ ︸
n times

→o

an n-ary function symbol to every variable of type σ s.t. for every A and
for nat there are infinitely many variables, to which this is assigned, and
to every function symbol there is exactly one variable this is assigned.

We write

xA, yA, zA

for variables to which A is assignment, sometimes as well

x : A, y : A, z : A

(as usual with indices and accents), and similarly with nat. We write f
for the variable to which f is assigned.

Further we replace efqσ , ιi,σ by many copies efqA, ιi,A for every formula
A s.t. σ(A) = σ, which are each treated as efqσ, ιi,A before.

(c) The set of ground terms r of type o with their assigned term t of L, written
as rt or r : t is inductively defined by:

•
xnat : x .

• If f is a n-ary function symbol, si : ti, then

f s1 · · · sn : f(t1, . . . , tn) .
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(d) The set of proof terms r together with the formula A it proves is induc-
tively defined by (we write r : A or rA for r proves A)

• If A is a formula, then

xA : A .

• If r : B, then

(λxA.r) : A→B .

• If r : A, s : B then

〈r, s〉0 : A ∧ B .

• If r : Ai, then

ιi,A1−i
(r) : A0 ∨ A1 .

• If r : A, x not free in B for yB ∈ FV(r), then

(λxnat.r) : ∀x.A .

• If r : t, s : B[x := t], then

〈r, s〉1 : ∃x.B .

• If r : A→B, s : A, then

(r s) : B .

• If r : A0 ∧ A1, then

(r i) : Ai .

• If r : A ∨ B, s : C, t : C, then

(r [λxA.s, λyB .t]) : C .

• If r : ∀x.A, s : t, then

(r s) : A[x := t] .

• If r : ∃x.A, s : B, x 6∈ FV(C) for yC ∈ FV(s) then

(r [λxnat, yA.sB ]) : B .

• If r : ⊥, then

(r efqA) : A .

Brackets are omitted as usual.
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(e) For each proof term r : A with free variables

xnat
i (i = 1, . . . , n), y

Bj

j (j = 1, . . . ,m) ,

and Γ s.t.
Bi ∈ Γ

assign we a derivation of Γ⇒A in natural deduction for intutionistic predi-
cate calculus (without equality) (more precisely in the following the deriva-
tion depends on the choice of Γ, but this influences only the choice of
weakenings):

• xA corresponds
A⇒A

(Weak)
Γ⇒A

• λxA.rB corresponds to

[rB ]

Γ, A⇒B
(→−I)

Γ⇒A→B
• 〈rA, sB〉0 corresponds to

rA

Γ⇒A
sB

Γ⇒B
(∧−I)

Γ⇒A ∧ B
• ιi,A1−i

(rAi ) corresponds to

rAi

Γ⇒Ai
(∨−I)i

Γ⇒A0 ∨ A1

• λxnat.rA corresponds to (where ∆ are the formulas in Γ in which x
does not occur free)

rA

∆⇒A
(∀−I)

∆⇒∀x.A
(Weak)

Γ⇒∀x.A
• 〈rt, sB [x := t]〉1 corresponds to

sB[x:=t]

Γ⇒B[x := t]
(∃−I)

Γ⇒∃x.B
• rA→B sA corresponds to

rA→B

Γ⇒A→B
sA

Γ⇒A
(→−E)

Γ⇒B
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• rA0∧A1 i corresponds to

rA0∧A1

Γ⇒A0 ∧ A1
(∧−Ei)

Γ⇒Ai

• rA∨B [λxA.sC , λxB .tC ] corresponds to

rA∨B

Γ⇒A ∨ B
sC

Γ, A⇒C
tC

Γ, B⇒C
(∨−E)

Γ⇒C
• r∀x.A st corresponds to

r∀x.A

Γ⇒∀x.A
(∀−E)

Γ⇒A[x := t]

• r∃x.A[λxnat, yA.sB ] corresponds to (where ∆ are the formulas in Γ in
which x does not occur free)

r∃x.A

Γ⇒∃x.A
sB

∆, A⇒B
(∃−E)

Γ,∆⇒B
• r⊥ efqA corresponds to

r⊥

Γ⇒⊥
(EFQ)

Γ⇒A
Remark: The above is the first part of the

Curry-Howard isomorphism,
in which to every one assigns to every proof of natural deduction a typed λ-
term. The second part will be, that normalization of the typed λ-calculus
corresponds to normalization of proofs.
If we identify all prime-formulas except ⊥, then elements of

σ(A)

in the standard intepretation of the types correspond to proofs in the
Brouwer-Heyting-Kolmogorov-interpretation of the logical connectives (here
o is interpreted as an arbitrary subset of the natural numbers, even possi-
ble empty, corresponding to the set of proofs of this prime-formula, about
which BHK does not say anything):

• A BHK-proof of
A→B

is a method transforming an proof of A into a proof of B. An element of

σ(A)→σ(B)

is an algorithm, mapping elements of σ(A) to elements of σ(B).
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• A BHK-proof of
A ∨B

is a proof of A or a proof of B plus the information, which one it is. An
element of

σ(A) + σ(B)

is either an element of σ(A) or of σ(B) plus the information which one it
is. Etc.

Not every λ-term of type σ(A) will correspond now to a proof of A, since
not all prime-formulas are equivalent. E.g. if

P 6≡ Q

are diffferent prime-formulas, then

λxP .x

is of type
σ(P→Q)

but not a proof of
P→Q .

However, every λ-term assigned to a proof in natural deduction is of course
a proof of the corresponding formula, the set of terms build according the
above is a subset of the λ-terms of type σ(A).

Definition 2.14.3 (a) In the following we assume, that if A 6≡ A′, xA
i ∈

FV(r)∪BV(r) for a proof term t, then xA′

i 6∈ FV(r)∪BV(r), similarly for
A vs. nat.

(b) Two proof terms are
α-equivalent,

if they are identical up to α-equivalence or replacing of bounded variables
xA by xA′ for A and A′ not α-equivalent, and their corresponding nat-
ural deduction derivations coinicide up to α-conversion of formulas. (A
definition of this directly on proof terms becomes quite complicated –
the better way of defining it directly is by defining it as α-equivalence of
corresponding Martin-Löf type theory derivations).

(c) Substitution
r[xA := s]

of an assumption variable xA by a proof term s : A in a derivation r : B
is defined as ordinary substitution, but by renaming of variables in such a
way that the result is a proof term, in which all assumptions A indicated
by

xA
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are replaced by the proof s, and other bounded variables possibly renamed
s.t. all formulas remain α-equivalent.

Similarly

r[xnat := s]

is defined for s : t, s.t. in the corresponding derivation, all formulas B, in
which x is not later bound, are replaced by

B[x := s]

up to α-conversion.

Again a formal definition is better given in the context of Martin-Löf type
theory.

(d) We identify in the following α-equivalent proof terms and formulas.

Lemma 2.14.4 (a) If r : A then r is a term of type σ(A).

(b) If

r : A, s : t ,

r has assumption variables

yA1
1 , . . . , yAm

m ,

then

r[x := s] : A[x := t]

with assumption variables

y
A1[x:=t]
1 , . . . , yAm[x:=t]

m .

(c) If

r : A, s : B ,

r has assumption variables

yA1
1 , . . . , yAm

m

and possibly yB, then

r[yB := s] : A ,

and has assumption variables

yA1
1 , . . . , yAm

m .

Proof: Immediate (if one wants this precise, one better does it in the
context of Martin-Löf type theory).
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Theorem 2.14.5 Assume

r : A, r −→ s ,

and that, when substitutions are carried out, renamings of variables are carried
out in accordance with Lemma 2.14.4. Then

s : A .

Proof:
Immediate by Lemma 2.14.4.

We will look now at all reductions and see, what proof transformations
are carried out. Further we will look at, how to justify them with the
BHK-interpretation.

(λx.r) s −→ r[x := s] .

(λxA.rB) sA corresponds to the following proof:

[xA : A]
·
·
·

[xA : A]
·
·
·

[xA : A]
·
·
·

r : B
(→−I)

λx.r : A→B s : A
(→−E)

(λx.r) s : B

The proof r[x := s] is as follows:

s : A
·
·
·

s : A
·
·
·

s : A
·
·
·

r[x := s] : B

So we replace in the proof r of A those assumptions of A denoted by

xA

by the direct proof
s : A

and get therefore a proof of B, which does not make the detour via an
introduction and then an elimination.
In the BHK-interpretation this correponds to the following: Take a proof
of B from a hypothetical proof of A. We get a proof of

A→B

as the function, which takes a proof of A and uses the method above to
obtain a proof of B.
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Instead we can however replace the hypothetical proof of A by the concrete
proof of A in the proof of B and get again a proof of

B .

Note that the λ-term and therefore the proof as well might become longer,
if the variable x occurs more than once.

The above corresponds to the elimination of a lemma:

If we have a lemma A and have a proof of B using as assumption A, then
we get a proof of B without using A by making an →-introduction w.r.t.
A and then an →-elimination with the proof of the lemma. We can get a
direct proof of B by replacing each use of the lemma by a direct proof. If
we use the lemma at most once, the resulting proof has the same size or
shorter (if the length of the proof of the lemma is taken into consideration).
However, if we use the lemma more than once, the direct proof will be
longer. The other reductions (except permutative conversions) correspond
to a generalization of the elimination of lemmata.

〈rA0
0 , rA1

1 〉0 i −→ ri .

〈rA0
0 , rA1

1 〉0) 0 corresponds to the following proof:

r0 : A0 r1 : A1
(∧−I)

〈r0, r1〉0 : A0 ∧A1
(∧−E)

ri : Ai

The reduced proof ri is as follows:

ri : Ai

In the BHK interpretation, one started with a proof of A0 and of A1, got
a proof of

A0 ∧ A1

by forming the pair of proofs and then a proof of

Ai

by taking the ith component. However we could have taken directly the
ith component.

This reduction always reduces the length of the λ-term, but we might
arrive at this reduction only after several other reduction steps.

ιi(r
Ai ) [λxA0

0 .sD
0 , λx

A1
1 .sD

1 ] −→ sD
i [xi := r] .
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ιi(r
Ai) [λxA0

0 .sD
0 , λx

A1
1 .sD

1 ] corresponds to the following derivation:

r : Ai
(∨−I)

ιi(r) : A0 ∨ A1

x0 : A0

·
·
·

s0 : D

x1 : A1

·
·
·

s1 : D
(∨−E)

ιi(r
Ai ) [λxA0

0 .sD
0 , λx

A1
1 .sD

1 ] : D

si[xi := r] corresponds to
r : Ai

·
·
·

si : D

So we replace in the proof si of D all assumptions marked by

xAi

i

by the proof
r : Ai .

Note that this proof might be longer than the original proof.
The relationship to the BHK-interpretation is again clear and will be
omitted in the following.

(λxnat.rA) st −→ r[x := s]A[x:=t] .

(λxnat.r) s corresponds to the following derivation:

xnat

·
·
·

r : A
(∀−I)

λxnat.r : ∀x.A
(∀−E)

(λxnat.r) s : A[x := t]

r[x := s] corresponds to
st

·
·
·

r[x := s] : A[x := t]

So we replace in the proof of A all occurrences of x by s and obtain a
direct proof of A[x := t].

〈rnat, sA〉1 [λxnat, yA.tD] −→ t[x := r, y := s] .
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〈rt, s
A[x:=t]
0 〉1 [λxnat, yA.sD

1 ] corresponds to

s1[x := r, y := s0] corresponds to

rnat s0 : A[z := r]
·
·
·

s1[x := r, y := s0] : D

So we replace in the proof s1 of D, x by r and assumptions of A marked
by y by the proof s of A[x := t].

rA0∨A1 [λxA0
0 .sC

0 , λx
A1
1 .sC

1 ] R −→ rA0∨A1 [λxA0
0 .(sC

0 R), λxA1
1 .(sC

1 R)] .

Let for instance C ≡ D→E, R is a term.

rA0∨A1 [λxA0
0 .sC

0 , λx
A1
1 .sC

1 ] R

corresponds to

r : A0 ∨ A1

x0 : A0

·
·
·

s0 : D→E

x1 : A1

·
·
·

s1 : D→E
rA0∨A1 [λxA0

0 .sC
0 , λx

A1
1 .sC

1 ] : D→E R : D

rA0∨A1 [λxA0
0 .sC

0 , λx
A1
1 .sC

1 ] R : E

rA0∨A1 [λxA0
0 .sC

0 R, λxA1
1 .sC

1 R] corresponds to

r : A0 ∨ A1

x0 : A0

·
·
·

s0 : D→E R : D

s0 R : E

x1 : A1

·
·
·

s1 : D→E R : D

s1 R : E

rA0∨A1 [λxA0
0 .sC

0 R, λxA1
1 .sC

1 R] : E

This reduction pushes the ∨-elimination as much down as possible (till an
introduction is reached).

r∃x.A [λxnat, yA.sC ] R −→ r∃x.A [λxnat, yA.sC R] .

Let for instance C ≡ ∃z.D, R ≡ [λznat
0 , zD

1 .t
E ].
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r∃x.A [λxnat.yA.s∃z.D] [λznat
0 , zD

1 .t
E ] corresponds to

r : ∃x.A

xnat y : A
·
·
·

s : ∃z.D
r [λx, y.s] : ∃z.D

znat
0 zD

1

·
·
·

s : E

r [λx, y.s] [λz0, z1.s] : E

r∃x.A [λxnat.yA.s∃z.D [λznat
0 , zD

1 .t
E ]] corresponds to

r : ∃x.A

xnat y : A
·
·
·

s : ∃z.D

znat
0 zD

1

·
·
·

s : E
s [λz0, z1.s] : E

r [λx, y.s [λz0, z1.s]] : ∃z.D

Remark: A derivation in normal form looks now as follows:
Its proof term is the result of application of introductions to a term which
is the result of eliminations to a variable, and the same holds with all
elimination terms.
Therefore the derivation starts with an assumption (if we have additional
axioms, they would be treated as assumptions), then several elimination
rules are applied and to the final formal several introductions. Only the
last of the elimination rules is an ∃- or ∨-elimination.
A path from the derived formula through formulas proved by introduction
rules and then through the main formulas of elimination rules till en as-
sumed formula is called a main path (because of (∧ − I) there are several
main path.
Now the derivation of the side-formulas of elimination rules follows the
same pattern, starting from assumptions (which can be in case of (∨ −
E), (∃ − I) discharged assumption) through elimination rules and then
introduction rules.
The paths defined as the main path, but ending at a side-formula of an
elimination rule are called side-paths.

Remark 2.14.6 All formulas in a normal derivation are subformulas of the
derived formula or of assumptions.

Proof: Immediate, by the consideration before.

Lemma 2.14.7 If r is a proof term which derives A from assumption variables
xAi

i , after renaming of variables rη is a proof term deriving A from the same
assumption variables
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Proof: First one shows that if

ri : Ai normal orri ∈ {0, 1} ,

and
x r1 · · · rn

is a proof term, then
exp(x r1 · · · rn)

is as well a proof term of the same formula with same assumption variables,
by induction on the derived formula. Then one shows the assertion by
induction on the length of r.

Remark: The η-expanded derivations is normal and has the property
that if the last elimination rule of the path is not (∃-E) or (∨-E), then
the resulting formula (or if there is no elimination rule at all the proved
formula) is not of the form

A→B or A ∧ B .
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Chapter 3

A Brief Introduction to
Martin-Löf’s Type Theory

3.1 Motivation

In the last section we attached to a proof term two kinds of types: a simple
type and a formula, which was something like a type. This led to some
confusion and to technical problems.
It is conceptually clearer, to treat formulas as real types. The first conse-
quence is

• We need dependent types: In the rule (N will now be the set of natural
numbers)

r : ∀x : N.A(x) s : N

r s : A(s)

we see that the type A(x) depends on x : N.

Further we have that the types

∀x : N.B(x) and A→B
have the same rule for building elements (except that in A→B B does not
depend on A). We write instead

Πx : N.B(x) and Πx : A.B .

Consequences

• Types which represent sets and which represents formulas (called in type
theory propositions) can be identified.

• However, unless we restrict possibilities for building dependent basic for-
mulas (those corresponding to prime formulas) to those built from ele-
ments of some basic types which represent sets only, types can now depend
from proof terms.

145
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• Therefore types have to be derived as terms. (E.g. the equality type

I(∀x : N.A(x), r, s)

which is the proposition

r, s are equal elements of ∀x : N.A(x)

can only be constructed, if we have proved before

r : ∀x : N.A(x)
s : ∀x : N.A(x) )

• Therefore we have two (so called) judgements:

A : type
r : A

• In order to organize equalities (w.r.t. α, β, η-conversion) we add two more
judgements

A = B : type for A,B are (α, β, η-)equal types
r = s : A for A,B are (α, β, η-)equal elements of the type A .

The equality above is called judgemental equality.

In order to make sense of

∀x : N.A(x), A(s)

we introduce a dependend type structure on top of what we had before.
The types before are now elements of a new type, called

Set ,

and A just mentioned is element of the type

N→Set .

Further because we have dependent types we need dependent judgements
of the form

x1 : A1, . . . , xn : An⇒θ

where θ is a judgement as mentioned before.
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3.2 The Logical Framework

The dependent λ-calculus on top of Set is called the logical framework
(or a logical framework, there are variants).

We will in the following first introduce rules of Martin-Löf’s type theory.
We will then see and refer to an intuitive understanding what substitution

A[x := t]

and α conversion means. In the later Section 3.5 will we then give a
precise definition of the language of Martin-Löf’s type theory and how
substitution, α-conversion is defined. We will there distinguish between
pre-types, which potentially occur as

A : type

(type will not be a pre-type) and pre-terms, objects which potentially
occur as r in a judgement

r : A .

In the following

• a, b, c, n, f, g, r, s, t will be pre-terms,

• A,B,C pre-types,

• x, y, z, u, v,X, Y, Z variables (X , Y , Z stand for variabels which are sup-
posed to be elements of real types whereas x, y, z, u, v are elements of
sets),

• ∆,Γ pre-contexts (of the form x1 : A1, . . . , xn : An),

• θ pre-nondependent-judgements, i.e. expressions of the form r : A, r = s :
A, A : type, A = B : type.

A judgement is an expression of the form

Γ⇒θ ,

with Γ, θ as before.

We identify in the following α-equivalent pre-terms, pre-types, pre-contexts,
pre-nondependent judgements and pre-judgements.

We write

• ∅ for the empty context,

• θ (if used as a judgement) for ∅⇒θ.



148 CHAPTER 3. MARTIN-LÖF’S TYPE THEORY

Remark on the premisses of the rules: In the following rules some as-
sumptions can be omitted. For instance it follows from the assumption

x : A⇒B : type

of (→-F)
A : type .

We take a choice which makes the rules look nice, so esthetic criteria gov-
ern our choice. The “official” version demands that all sub-judgements
of a judgement have to be assumptions of the rule, where the set of sub-
judgements

D(Γ⇒A)

of a judgement Γ⇒A is defined as
( D+(Γ⇒A) := D(Γ⇒A) ∪ {Γ⇒A} )

• D(Γ⇒A = B : type) := D+(Γ⇒A : type) ∪ D+(Γ⇒B : type).

• D(Γ⇒r = s : A : type) := D+(Γ⇒r : A) ∪ D+(Γ⇒s : A).

• D(Γ⇒r : A) := D+(Γ⇒A : type).

• D(Γ, x : A⇒B : type) := D+(Γ⇒Atype).

• D(∅⇒A : type) := ∅.

But this does not look very nice.

Assumption and Weakening

Γ⇒A : type
(Ass)

Γ, x : A⇒x : A

Γ⇒A : type

Γ⇒θ(Weak)
Γ, x : A⇒θ

(x 6∈ FV(θ))

All the following rules, which are not axioms (i.e. no premisses) can be
weakened by a context, i.e.

∆1⇒θ1
· · ·

∆n⇒θn(Rule )
∆⇒θ

(n > 0) denotes the rule

Γ,∆1⇒θ1
· · ·

Γ,∆n⇒θn
(Rule )

Γ,∆⇒θ

Judgemental Equality rules
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A : type
(Ref0)

A = A : type
r : A(Ref1)

r = r : A

A = B : type
(Sym0)

B = A : type
r = s : A(Sym1)
s = r : A

A = B : type

B = C : type
(Trans0)

A = C : type

r = s : A
s = t : A(Trans1)
r = t : A

r : A
A = B : type

(Repl0)
r : B

r = s : A
A = B : type

(Repl1)
r = s : B

The Type Set

(Set-I) Set : type

A : Set(Set-E)
A : type

A = B : Set(Set-E=)
A = B : type

Remark: Sometimes the last two rules are written as

A : Set(Set-E∗)
El(A) : type

A = B : Set(Set-E∗=)
El(A) = El(B) : type

But this leads only to an unnecessary technical overload.

The Dependend Function Type

The formation rules of →:

A : type

x : A⇒B : type
(→-F)

(x : A)→B : type

A = A′ : type

x : A⇒B = B′ : type
(→-F=)

(x : A)→B = (x : A′)→B′ : type

The introduction rules of →:

A : type

x : A⇒B : type

x : A⇒s : B(→-I)
(x)s : (x : A)→B

A : type

x : A⇒B : type

x : A⇒s = s′ : B(→-I=)
(x)s = (x)s′ : (x : A)→B

The elimination rules of →:
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A : type

x : A⇒B : type

r : (x : A)→B
s : A(→-E)

r s : B[x := s]

A : type

x : A⇒B : type

r = r′ : (x : A)→B
s = s′ : A(→-E)

r s = r′ s′ : B[x := s]

The equality rules of →:

A : type

x : A⇒B : type

x : A⇒r : B
s : A(→-=)

((x)r)(s) = r[x := s] : B[x := s]

A : type

x : A⇒B : type

r : (x : A)→B
(→-η)

r = (x)(r(x)) : (x : A)→B

Abbreviations:

• (x1 : A1, . . . , xn : An)→B :=
(x1 : A1)→((x2 : A2)→· · ·→((xn : An)→B) · · · ).

• (x1 : A1, . . . , xi−1 : Ai−1, Ai, xi+1 : Ai+1, . . . , xn : An)→B :=
(x1 : A1, . . . , xi−1 : Ai−1, xi : Ai, xi+1 : Ai+1, . . . , xn : An)→B

for a fresh variable xi,

• A→B := (A)→B.

• (x1, . . . , xn)r := (x1)((x2) · · · ((xn)r) · · · ).

The dependent product. It is useful to have dependent products as
part of the logical framework as well, but it will not be needed for what
follows. We will give their rules below in Subsection 3.4.

3.3 The Sets in Martin-Löf’s Type Theory

The sets of Martin-Löf’s type theory can be defined in the precense of the
logical framework, except of equality rules, as axioms only. In implemen-
tations usually only the logical framework is predefined, the sets have to
be defined by the user.
The constructors of the following sets will however have quite a lot of
additional parameters which seem to be unnecessary. For instance

instead of λx.t we have to write λ A;B (x)t ,
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instead of r(s) we have to write Ap A B C r s ,

But it turns out that these additional premisses are necessary, without
more statements can be proved. However, these premisses make the proof
terms look quite complicated. Therefore, hiding mechanisms have been
suggested, but the result still does not look very nice.
One pragmatic approach was taken in the system Half, and the result looks
rather harmonic: The dependent function and product type are extended
in so far as, if

A : Set, x : A⇒B : Set ,

then
(x : A)→B, (x : A)×B : Set .

Therefore in the most common constructors

λ, Ap

we have only the really necessary arguments.
Further the construtors in the introduction rules don’t have the additional
parameters, and the elimination rules are replaced by definition by case
distinction (so called pattern matching), which is more or less definition
by recursion as we usually do it, and then only the parameters a function
really depends on have to be spelled out.
The resulting type theory looks good (except that unfortunately full re-
cursion is allowed and therefore the type theory is inconsistent), and this
seems to be a good pragmatic approach.

The Finite Sets

Let n ∈ N.

(Nn − F) Nn : Set
(Nn − Ik) An

k : Nn (k = 0, . . . , n− 1)
(Nn − E) Cn : (X : Nn→Set,

u0 : X An
0 ,

. . . ,
un−1 : X An

n−1,
x : Nn)
→X x

B : N→Set
s0 : B An

0

· · ·
sn−1 : B An

n−1
(Nn-= )

Cn B s0 . . . sn−1 An
k = sk : B An

k
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The original notation was nk for An
k , but this leads often to confusion.

N2 are the booleans, and we can define

true := A2
0, false := A2

1

ifA a then s0 else s1 := C2 A s0 s1 a .

N0 is the falsity: It has no elements, and the elimination rule is

C0 : (X : N0→Set, x : N0)→X x

or ex falsum quodlibet with respect to every set X depending on N0. Note
that there is no equality rule for N0.
The elimination and equality rules can be derived from the introduction
rules: From an element of a set we can define an element of another set, if
we have for each way, the element is constructed we have one step function
which tells us what to do. In the context of inductive-recursive definitions
this derivation of elimination rules from introcuction rules is made precise.
Therefore we will not add η-rules for the sets: they follow not in a direct
way from the introduction rules but require additional considerations.

The Set of Natural Numbers

(N− F) N : Set
(N− I0) 0 : N
(N− IS) S : N→N
(N− E) P : (X : N→Set,

u0 : X 0,
uS : (x : N, X x)→X (S x),
x : N)→X x

A : N→Set
s0 : A 0

sS : (x : N, A x)→A (S x)
(N-=0 )

P A s0 sS 0 = s0 : B 0

A : N→Set
s0 : A 0

sS : (x : N, A x)→A (S x)

r : N(N-=S )
P A s0 sS (Sr) = sS r (P A s0 sS r) : B (S r)

The symbol P stands for primitive recursion.
If A = (x)N the elimination rule yields ordinary primitive recursion:
Assume

a : N, f : N→N→N .
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Then
g := P ((x)N) a f : N→N

and we can derive

g 0 = a : N ,
g (Sn) = f n (g n) : N ,

If A is considered as a formula, depending on a natural number, this
corresponds to induction:
From proofs of

A 0 and x : N, A x⇒A (Sx) ,

i.e. from
r : A 0, s : (x : N, A x)→A (Sx)

and from
n : N

we can derive
A n

with proof term
P A r s n : A n .

The Disjoint Union of Sets

In the following we write A+B instead of + A B.

(+− F) + : (X0 : Set, X1 : Set)→Set
(+− I0) i0 : (X0 : Set, X1 : Set, x : X0)→X0 +X1

(+− I1) i1 : (X0 : Set, X1 : Set, x : X1)→X0 +X1

(+− E) D : (X0 : Set,
X1 : Set,
Y : (X0 +X1)→Set,
u0 : (x : X0)→Y (i0 x),
u1 : (x : X1)→Y (i1 x),
x : X0 +X1)→Y x

A0 : Set

A1 : Set

B : (A0 +A1)→Set

s0 : (x : A0)→B (i0 x),

s1 : (x : A1)→B (i1 x),

a : Ai(+-=i )
D A0 A1 B s0 s1 (ii a) = si a : B (ii a)
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Note that the rules above are exactly the same as the rules for + in the
simple typed λ-calculus, just with the additional type information added.
For propositions A, B, A + B is therefore the proposition A ∨ B, and
the above introduction and elimination rules correspond exactly to the
introduction and elimination rules for ∨, the equality rule is the above
mentioned proof transformation.

The Π-set

(Π− F) Π : (X : Set, Y : X→Set)→Set
(Π− I) λ : (X : Set, Y : X→Set, y : (x : X)→Y x)

→Π X Y
(Π− E) F : (X : Set,

Y : X→Set,
Z : (Π X Y )→Set,
u : (y : (x : X)→Y y)→Z (λ X Y y),
x : (Π X Y ))→Z x

A : Set
B : A→Set

C : (Π A B)→Set

s : (y : (x : A)→B x)→C (λ A B y),

f : (x : A)→B x
(Π-=)

F A B C s (λ A B f) = s f : C (λ A B f)

The term

λ A B f

looks a bit too long for practical purposes, but we have indicated, how to
remedy this: Use a version of → for Set.
The elimination rule (F is called “Fun-split”) is non-standard, but as it
stands, it is the exact counterpart of the introduction rule.
We can define from it application

Ap := (X,Y, y, x, )
F X Y ((y) Y x)

((z)z x)
y

: (X : Set, Y : X→Set, y : Π X Y, x : X)→Y x

and can derive, if A,B, f, a have appropriate types,

Ap A B (λ A B f) a = f a : B a .
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The only other application is that we can show propositional η-equality. If
this is not needed, one could take appropriate rules for Ap as elimination
rules for Π.
We can define now

∀x : A.B(x) := Π(A,B)
A→propB := Π(A, (y)B) for y a new variable

where A→propB means the proposition “A implies B”. We get, if we
had only the rules for Ap as elimination rules, the ordinary rules for ∀,
and propositional implication →. The rules for F cannot be expressed in
natural deduction. The would be needed to be written like

a : ∀x : A.B(x) (x : A)→B(x)⇒C
C

i.e. if we have a proof of

∀x.B(x)

and,

whenever we have x : A⇒B(x) then C

then we have C. Such a rule does not make sense in ordinary natural
deduction.

The Σ-set

(Σ− F) Σ : (X : Set, Y : X→Set)→Set
(Σ− I) p : (X : Set, Y : X→Set, x : X, y : Y x)

→Σ X Y
(Σ− E) E : (X : Set,

Y : X→Set,
Z : (Σ X Y )→Set,
u : (x : X, y : Y x)→Z (p X Y x y),
x : (Σ X Y ))→Z x

A : Set
B : A→Set

C : (Σ A B)→Set

s : (x : A, y : B x)→C (p A B x y),

a : A
b : B(Σ-=)

E A B C s (p A B a b) = s a b
: C (p A B a b)
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Again, in order to reduce the complexity, one can make use of the logical
framework product.
For a set A and a proposition B(x) depending on x : A we can define now

∃x : A.B(x) := Σ A B

and get the usual rules for ∃.
We can define as well for propositions A,B

A ∧B := Σ A ((x)B) (x fresh) .

The elimination rule for ∧ corresponds now to a rule

A ∧ B A,B⇒C
C

One easily verifies that from this rule one can derive the ordinary elimi-
nation rules for ∧ and vice versa.

The Identity Set

(I− F) I : (X : Set, x : X, y : X)→Set
(I− I) r : (X : Set, x : X)→I X x x
(I− E) J : (X : Set,

Y : (x : X, y : X, z : I X x y)→Set,
u : (x : X)→Y x x (r X x),
x : X,
y : X,
z : I X x y)→Y x y z

A : Set

B : (x : A, y : A, z : I A x y)→Set

s : (x : A)→B x x (r A x),

a : A(I-=)
J A B s a a (r A a) = s a : C a a (r A a)

For a set A I A a b is the set corresponding to the proposition

a = b

(as elements of A, sometimes written as

a =A b )

The introduction rule proves reflexivity

a = a .
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But, since from a = b : A it follows

I A a a = I A a b : Set ,

we can prove a =A b if we can prove a = b : A, i.e. if a, b are α, β, η-
equivalent (with respect to the reductions, which correspond to our equa-
tional rules).
If we takeA = N and restrict us to terms build from functions for primitive
recursive functions, α, β, η-equivalence for these terms means that their
equality can be derived from the equality rules and defining equations for
primitive recursive functions.
In natural deduction, a proposition B as above cannot depend on a proof
for a =A b, therefore the elimination rules correspond to:
If B(x, y) is a proposition, depending on x, y : A then we have the rule

a =A b B(x, x)

B(a, b)

One sees easily from this rule we can derive symmetry, transitivity and
congruence and vice versa.
The nice thing is that J can be derived directly. However there is another
rule, which was shown by Martin Hofmann in his thesis to be independent
of J:

(I− E2) K : (X : Set,
Y : (x : X, y : I X x x)→Set,
u : (x : X)→Y x (r X x),
x : X,
z : I X x x)→Y x z

A : Set

B : (x : A, y : I A x x)→Set

s : (x : A)→B x (r A x),

a : A(I-=2)
K A B s a (r A a) = s a : C a (r A a)

We have
(X, x)

(K X
((y, v)I (I X y y) v (r X y))
((y)r (I X y y) (r X x)))

: (X : Set,
x : X,
v : I X x x)
→ I(I X x x) v (r X x) ,

i.e. with K we can prove (as a propositional equality) that there is only
one equality proof of x =X x, namely r X x. This is not provable with J.
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We can make now precise that with F we can prove propositional η-
equality for the Π-set:

We have: If

• X : Set,

• Y : X→Set,

• x : (x : X)→Y x,

• x′ := λ X Y x

then we can prove (w.r.t. to judgemental equality

λ X Y ((y)Ap X Y x′ y) = λ X Y ((y)x(y)) = λ X Y x ≡ x′

i.e.

λ X Y ((y)Ap X Y x′ y) = x′ : Π X Y .

Therefore we can show

(X,Y )
F X Y
((x)I (Π X Y ) x (λ X Y ((y)Ap X Y x y)))
((x)r (Π X Y ) (λ X Y x))

: (X : Set, Y : X→Set, x : Π X Y )→I (Π X Y ) x (λ X Y ((y)Ap X Y x y))

Therefore, also x and λ X Y ((y)Ap X Y x y) are not equal w.r.t
judgemental equality, their equality can be shown.

The W-set

(W − F) W : (X : Set, Y : X→Set)→Set
(W − I) sup : (X : Set, Y : X→Set,

x : X, y : (Y x)→W X Y )
→W X Y

(W − E) R : (X : Set,
Y : X→Set,
Z : (W X Y )→Set,
u : (x : X,
y : (Y x)→W X Y,
z : (u : Y x)→Z (y u))→Z (sup X Y x y)
x : (W X Y ))→Z x
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A : Set
B : A→Set
C : (W A B)→Set
s : (x : A,

y : (B x)→W A B,
u : (u : B x)→C (y x))→C (sup A B x y)

a : A
b : (B a)→W A B

(W-=)
R A B C s (sup A B a b) = s a b ((x)R A B C s (b x))

: C (sup A B a b)

The elements of W A B are well-founded trees with branching degrees
B x for x : A.
The introduction rule constructs from an element

a : A

and an B a indexed collection of trees

b : (B a)→W A B

a new tree
sup a b

with label a and subtrees b x for x : A.
The elimination rule is induction over sees trees. The step term is crucial:
If we can for every a : A, b : (B a)→W A B from the induction hypothesis,
which is an element

c : (x : B a)→C (b x) ,

derive an element of
C (sup A B a b)

then we can derive
(x : W A B))→C x .

With W we can simulate inductive definitions, but this is only interesting
in order to explore the strength of the closed theory, we are defining in this
section. When working in an implemented system, instead of simulating
inductive definitions one defines them directly by following essentially the
pattern according to which W A B is defined.

The Universe

A universe is a collection of sets. More precisely it is a collection of codes
for sets, and simultaneously with the universe U we define its decoding
function

T : U→Set ,
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which assigns to a code the set it denotes.
We define here a universe closed under all set constructions given before:

(U − F) U : Set
(T − F) T : U→Set

(U − I
N̂n

) N̂n : U (n ∈ N)

(U − I
N̂

) N̂ : U

(U − IΣ̂) Σ̂ : (x : U, y : (Tx)→U)→U

(U − IΠ̂) Π̂ : (x : U, y : (Tx)→U)→U

(U − I
Ŵ

) Ŵ : (x : U, y : (Tx)→U)→U
(U − I+̂) +̂ : (x : U, y : U)→U

(U − Î
I
) Î : (x : U, y : T x, y : T x)→U

a+̂b := +̂ a b .

(T-=
N̂n

) T N̂n = Nn : Set (T-=
N̂

) T N̂ = N : Set

a : U

b : (T a)→U
(T-=Σ̂)

T(Σ̂ a b) = Σ (T a) ((x)T (b x)) : Set

a : U
b : (T a)→U

(T-=Π̂)
T(Π̂ a b) = Π (T a) ((x)T (b x)) : Set

a : U
b : (T a)→U

(T-=
Ŵ

)
T(Ŵ a b) = W (T a) ((x)T (b x)) : Set

a : U
b : U(T-=+̂)

T(a+̂b) = (T a) + (T b) : Set

a : U
b : T a
c : T a(T-=

Î
)

T(̂I a b c) = I (T a) b c : Set

An elimination rule as before can not be given for the universe, since we
have infinitely many introduction rules (because for every n ∈ N we have
one introduction rule for

Nn : U .
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However, one sees that we only need N0 and N1. (For n > 1 can we define
Nn as

N1 + · · ·+ N1︸ ︷︷ ︸
ntimes

.)

Then one can define an elimination rule in the spirit of what was before.
Applications of the elimination rule are however very limited, so we we do
not spell out this rule here. According Martin-Löf, the real elimination
rule for the U is T : U→Set.
If one wants to prove ¬(0 = 1) i.e. give a term r s.t.

r : (I N 0 (S 0))→propN0

one needs at least a microscopic universe, i.e. a universe which has one
empty and one nonempty type.

3.4 The Dependent Product of Types

The Binary Product

The formation rules of ×:

A : type

x : A⇒B : type
(×-F)

(x : A)×B : type

A = A′ : type

x : A⇒B = B′ : type
(×-F=)

(x : A)×B = (x : A′)×B′ : type

The introduction rules of ×:

A : type

x : A⇒B : type

r : A

s : B[x := r]
(×-I) 〈r, s〉 : (x : A)×B

A : type

x : A⇒B : type

r = r′ : A

s = s′ : B[x := r]
(×-I=) 〈r, s〉 = 〈r′, s′〉 : (x : A)×B

The elimination rules of ×:

A : type

x : A⇒B : type

r : (x : A)×B
(×-E0)

r 0 : A

A : type

x : A⇒B : type

r = r′ : (x : A)×B
(×-E0,=)

r 0 = r′ 0 : A
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A : type

x : A⇒B : type

r : (x : A)×B
(×-E1)

r 1 : B[x := r 0]

A : type

x : A⇒B : type

r = r′ : (x : A)×B
(×-E1,=)

r′ 1 = r′ 1 : B[x := r 0]

The equality rules for ×:

A : type

x : A⇒B : type

r : A

s : B[x := r]
(×-=0) 〈r, s〉 0 = r : A

A : type

x : A⇒B : type

r : A

s : B[x := r]
(×-=1) 〈r, s〉 1 = s : B[x := r 0]

A : type

x : A⇒B : type

r : (x : A)×B
(×-η)

r = 〈r 0, r 1〉 : (x : A)×B

Abbreviations:

• (x1 : A1, . . . , xn : An)×B :=
(x1 : A1)× ((x2 : A2)× · · · × ((xn : An)×B) · · · ).

• (x1 : A1, . . . , xi−1 : Ai−1, Ai, xi+1 : Ai+1, . . . , xn : An)×B :=
(x1 : A1, . . . , xi−1 : Ai−1, xi : Ai, xi+1 : Ai+1, . . . , xn : An)×B

for a fresh variable xi,

• A×B := (A)×B.

• 〈r1, . . . , rn〉 := 〈r1, 〈r2, . . . , 〈rn−1, rn〉〉〉.

• If r is introduced as an element of

(x1 : A1, . . . , xn : An)×B ,

one sometimes uses xi as labels and writes

rxi

for 



r 0 · · · 0︸ ︷︷ ︸
n − i + 1 times

1 n > 1

r 0 · · · 0︸ ︷︷ ︸
n times

n = 1
.

One can write the above type as

(x1 : A1, . . . , xn : An)× (x : B)
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and writes then
rx for r 1 .

The problem is that one can then of course no longer replace xi by different
variabels.

The Empty Product

The formation and introduction rule of 1:

(1-F) 1 : type (1-I) 〈〉 : 1

The η-equality for 1:

r : 1(1-η)
r = 〈〉 : 1

3.5 The Language of Martin-Löf’s Type The-

ory

Definition 3.5.1 (a) We assume infinitely many variables be given. In the
following x, y, z, u, v,X, Y, Z, possibly with subscripts and accents, are
variables.

(b) The type constructors of Martin-Löf’s type theory are Set, 1.

(c) The set constructors of Martin-Löf’s type theory are:

• N, +, Π, Σ, I, W,

• U, T,

• for n ∈ N Nn.

(d) The term constructors of Martin-Löf’s type theory are

• 0, S, P,

• i0, i1, D,

• λ, F,

• p, E,

• r, J, K,

• sup, R,

• N̂, +̂, Π̂, Σ̂, Î, Ŵ,

• 〈〉,
• and for n ∈ N Nn, Cn, and
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• for k < n An
k .

(e) The pre-terms are:

• term constructors,

• set constructors and,

• if r, s are pre-terms,

– (r s),

– ((x)r),

– 〈r, s〉,
– r 0,

– r 1.

In the following a, b, c, n, f, g, r, s, t, possibly with subscripts and accents,will
be pre-terms.

(f) The pre-sets are:

• set constructors and,

• if p, q are pre-sets,

– (p r),

– (p q),

– ((x)p),

– 〈p, q〉,
– p 0,

– p 1.

(g) The pre-types are:

• type constructors,

• pre-sets, and,

• if A,B are pre-types,

– (x : A)→B,

– (x : A)×B.

In the following A,B,C, with accents or subscripts, denote pre-types.

(h) Pre-nondependent judgements are

• A = B : type,

• A : type,

• r : A,

• r = s : A.
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In the following θ, possibly with accents or indices, denote pre-nondependent
judgements.

(i) Pre-contexts are
x1 : A1, . . . , xn : An

where n ∈ N (including 0, this pre-context is denoted by ∅).
In the following Γ, ∆, possibly with accents or indices, denote pre-contexts.

If Γ, ∆ are pre-contexts, Γ,∆ is as usual the concatenation of the pre-
contexts.

(j) Pre-judgements are Γ⇒θ.

(k) We omit parentheses as usual (where r s t := (r s) t).

Definition 3.5.2 (a) For pre-terms and -types d we define the set of free
variables FV(d) by

• If d ∈ {Set,1} or d is a set- or term-constructor, then FV(d) := ∅.
• FV(d e) := FV(〈d, e〉) := FV(d) ∪ FV(e).

• FV(d i) := FV(d) (i = 0, 1).

• FV((z)d) := FV(d) \ {z}.
• FV((x : A) ◦B) := FV(A) ∪ (FV(B) \ {x}). (◦ ∈ {→,×}).

(b) For pre-terms and pre-types d, f we define the substitution of a variable
x by f in d by induction on the d:

• If d ∈ {Set,1} or d is a set- or term-constructor, then d[x := f ] := d.

• (d e)[x := f ] := (d[x := f ] e[x := f ]).

• 〈d, e〉[x := f ] := 〈d[x := f ], e[x := f ]〉,
• (d i)[x := f ] := (d[x := f ] i) (i = 0, 1).

•

((z)d)[x := f ] :=





(z)d if x ≡ z
(z)(d[x := f ]) if x 6≡ z, (x 6∈ FV(d) ∨ y 6∈ FV(f))

(u)(d[z := u][x := f ]) otherwise, u minimal s.t.

u 6∈ FV(f d x) .

• If ((z)e)[x := f ] = (z′)e′, then for ◦ ∈ {→,×},

((z : d) ◦ e)[x := f ] = (z : (d[x := f ])) ◦ e′ .

(c) We define the α-equivalence on pre-terms and pre-types as least transitive
and reflexive relations on pre-terms and pre-types s.t.

• (z)d, (y)d[z := y] are α-equivalent, if y 6∈ FV(d).
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• (z : d) ◦ e, (y : d) ◦ (e[z := y]) are α-equivalent, if y 6∈ FV(e).

• If d, d′ are α-equivalent, e, e′ are α-equivalent, so are

– (d e) and (d′ e′),

– 〈d, e〉 and 〈d′, e′〉,
– d i and d′ i,

– (z)d and (z)d′,

– (z : d) ◦ e and (z : d′) ◦ e′, ◦ ∈ {→,×}.

(d) • FV(A = B : type) := FV(A) ∪ FV(B),

• FV(A : type) := FV(A),

• FV(r = s : A) := FV(r) ∪ FV(s) ∪ FV(A),

• FV(r : A) := FV(r) ∪ FV(A).

(e) α-equivalence of pre-nondependent judgements is the least reflexive rela-
tion s.t. if A,A′, r, r′, s, s′ are α-equivalent, respectively, so are

• A = B : type and A′ = B′ : type,

• A : type and A′ : type,

• r : A and r′ : A′,

• r = s : A and r′ = s′ : A′.

(f) For pre-nondependent judgements θ and pre-terms and pre-types f we
define θ[x := f ] by:

• (A = B : type)[x := f ] := A[x := f ] = B[x := f ] : type,

• (A : type)[x := f ] := (A[x := f ]) : type,

• (r : A)[x := f ] := r[x := f ] : A[x := f ],

• (r = s : A)[x := f ] := r[x := f ] = s[x := f ] : A[x := f ].

(g) For pre-judgements Γ⇒θ we define FV(Γ⇒θ) by:

• FV(∅⇒θ) := FV(θ).

• FV(x : A,Γ⇒θ) := FV(A) ∪ (FV(Γ⇒θ) \ {x}).

(h) For pre-judgements Γ⇒θ and pre-terms and -types f we define

(Γ⇒θ)[x := f ]

by:

(i) (∅⇒θ)[x := f ] := ∅⇒(θ[x := f ]).

(j) (x : A,Γ⇒θ)[x := f ] := x : (A[x := f ]),Γ⇒θ.
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(k) If x 6≡ y, y 6∈ FV(Γ⇒θ) ∨ x 6∈ FV(f), then

(x : A,Γ⇒θ)[y := f ] := x : (A[y := f ]), ((Γ⇒θ)[y := f ]) .

(l) If x 6≡ y, y ∈ FV(Γ⇒θ), x ∈ FV(f), then let u minimal s.t. u 6∈ FV(Γ⇒θ),
u 6∈ FV(d x).

(x : A,Γ⇒θ)[y := f ] := u : (A[y := f ]), ((Γ⇒θ)[x := u][y := f ]) .

(m) α-equivalence of pre-judgements is the least transitive and reflexive rela-
tion on pre-judgements s.t.

• If θ, θ are α-equivalent, so are ∅⇒θ and ∅⇒θ′.
• If A,A′ are α-equivalent and as well Γ⇒θ, Γ′⇒θ′, so are x : A,Γ⇒θ,
x : A′,Γ′⇒θ′.

• If y 6∈ FV(Γ⇒θ), then x : A,Γ⇒θ and y : A, ((Γ⇒θ)[x := y]) are
α-equivalent.
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