
AVoCS 2008

Automated Verification of Safety Properties
in Railway Interlocking Systems Defined with

Ladder Logic 1

Karim Kanso Faron Moller Anton Setzer

Dept. of Computer Science, Swansea University, Swansea SA2 8PP, UK
email: (cskarim, F.G.Moller, A.G.Setzer) @ swansea.ac.uk

Abstract

In this project the verification of safety conditions for the control of a railway interlocking system written in
ladder logic is carried out. All translation steps have been implemented and tested for a real-world example
of a railway interlocking system. The steps in this translation are as follows: 1. The development of a
mathematical model of a railway interlocking system and the translation from ladder logic into this model.
2. The development of verification conditions guaranteeing the correctness of safety conditions. 3. The
verification of safety conditions using a SAT solver. 4. The generation of specific safety conditions from
more generic ones using a topological model of a railway yard.

Keywords: Ladder logic, railway interlocking systems, SAT solvers, verification, automated theorem
proving.

1. Introduction

In this project we have written a program which allows the fully-automated verifi-

cation of railway interlocking systems using SAT solver technology. This software

has been applied to a small railway yard.

2. Translation of ladder logic into propositional logic

The railway control system given to us was written in ladder logic, which seems

to be the assembly language level for such control systems. Ladder logic is a

graphical representation of a sequence of Boolean assignments. After carrying out

this translation we obtain a sequence of Boolean valued assignments of the form

x1 := ϕ1; · · · xn := ϕn;

where ϕi are propositional formulae with variables taken from the set of input,

output and intermediate variables (latches).

This ladder is then executed by a program of the form

1 This research was carried out as a Master of Research (MRes) project by the first author under the
supervision of the second and third authors, and was supported by Invensys Railway Systems, Chippenham.



Initialise;

while(true){ output(); input(); x1 := ϕ1; · · · xn := ϕn; }
In the initialisation phase some variables are set to initial values, others remain

undefined. Then a continuous while loop is entered in which: the values of the

output variables are sent to the signals, points, etc; the input variables are set

to the inputs (states of buttons from the control panel, sensors from the track

segments, sensors from the points, etc.); and then the ladder is executed. Note that,

while executing the assignments, the real world output variables are not modified,

therefore correctness is only required at the end of each execution of the ladder.

(The system needs not to be safe directly after initialisation – correctness after at

least one execution of the ladder suffices, and even this condition can be relaxed.)

To prove the correctness of a safety condition ψ, we need to show that ψ holds

after executing the ladder n times for every n≥1. In our system, we prove this by

induction: we show that ψ holds after initialisation and one execution of the ladder;

and that, if ψ holds before the execution of the ladder, it holds afterwards as well.

More formally, we define a formula ϕL which models the execution of the ladder;

assuming for simplicity that the xi are all different, this has the form

ϕL = (x′1 ↔ ϕ′1) ∧ · · · ∧ (x′n ↔ ϕ′n)

Here x′i are new variables representing the variables after execution; and ϕ′i is the

result of replacing x1, . . . , xi−1 by x′1, . . . , x
′
i−1. Let ϕI be the formula expressing

the assignments in the initialisation phase. The conditions to be verified are:

(ϕI ∧ ϕL)→ ψ′ and (ψ ∧ ϕL)→ ψ′

where ψ′ is the result of replacing xi by x′i, thus expressing that the safety condition

holds with the variables as they have been adapted after the execution of the ladder.

For example, if the initialisation sets variable a to true, the safety condition is b=a,

and the ladder has one rung representing a := b, we obtain the formulae

((a↔ true) ∧ a′ ↔ b)→ b↔ a′ and ((b↔ a) ∧ a′ ↔ b)→ b↔ a′

which in this toy example are provable. For the verification, we use a SAT solver

to search for a satisfying assignment which falsifies one of the two formulae above.

3. Invariants

When verifying the railway interlocking system, false positives were found. There

were two reasons for these:

1) Not all choices of input variables correspond to physically possible states. An

example is a 3-way switch which has 3 positions A, B, C (e.g. “control from central

panel”, “control by local station” and “control by emergency panel”). The output

of such a switch would then be represented by 3 variables, one indicating whether

A was chosen, one for B and one for C. At any time at least one of A, B, C is

chosen, but if the button is malfunctioning (e.g. staples falling into the button) it

might be that both A and B or B and C are chosen.

2) Some combinations of variables are unreachable. When looking carefully at

false positives, it was usually found that some variables were in a state which should

not be reachable, typically when two variables are related to each other (e.g. if the

green signal is activated the red one is not activated). When such a possible invariant



ψInv was discovered (e.g. signali is red ↔ ¬signali is green) we first tried to prove

that it is a true invariant, i.e. that it always holds:

(ϕI ∧ ϕL)→ ψ′Inv and (ψInv ∧ ϕL)→ ψ′Inv

If it was provable, we could assume that this invariant holds before executing the

ladder, thus relaxing the induction statement to:

(ψ ∧ ϕL ∧ ψInv)→ ψ′

It seems to be a major challenge to identify invariants automatically.

4. Generating specific safety conditions from signalling principles

In order to make it easier to write down safety conditions, we formulated them

first in first order logic using general predicates. An example would be “points in

a rail yard should not be set to the normal and reverse positions simultaneously”:

∀pt∈Points:¬[normal(pt)∧ reverse(pt)] (normal and reverse are the two possible

positions of points). We used Prolog terms to construct a topological model of

the rail yard. Variables in the general safety principles range over finite domains,

thus universal quantification can be replaced by a finite conjunction, and existential

quantification by a finite disjunction. In this way we obtain propositional formulae

referring to the propositional variables used in the ladder, which can then be verified

using the machinery introduced above. In order to identify more precisely the reason

for a possible counter example, the safety conditions – which often formed a large

conjunction – were split into its conjuncts which form more specific safety conditions.

5. Conclusion

Our approach was applied to a model provided by our industrial sponsor of a railway

yard with 331 rungs and 599 variables, representing a station with two platforms

and one railway line with two tracks feeding into it. The running time of the SAT

solver itself was never longer than a couple of seconds. We were able to prove many

safety conditions. We found some counter examples, which were however already

known to the company but recognised not to be safety critical, being intermittent

and occurring for only one cycle of the ladder. This project therefore demonstrates

that automated verification of railway interlocking systems, at least for smaller

examples, is feasible. The main advantages of our approach is its simplicity and

that it verifies safety at the lowest level – which is actually executed – thus avoiding

compiler errors.


