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Abstract. Induction-induction is a principle for defining data types in
Martin-Löf Type Theory. An inductive-inductive definition consists of a
set A, together with an A-indexed family B : AÑ Set, where both A and
B are inductively defined in such a way that the constructors for A can
refer to B and vice versa. In addition, the constructors for B can refer
to the constructors for A. We extend the usual initial algebra semantics
for ordinary inductive data types to the inductive-inductive setting by
considering dialgebras instead of ordinary algebras. This gives a new and
compact formalisation of inductive-inductive definitions, which we prove
is equivalent to the usual formulation with elimination rules.

1 Introduction

Induction is an important principle of definition and reasoning, especially so in
constructive mathematics and computer science, where the concept of inductively
defined set and data type coincide. There are two well-established approaches to
model the semantics of such data types: in Martin-Löf Type Theory [14], each
set A comes equipped with an eliminator which at the same time represents
reasoning by induction over A and the definition of recursive functions out of A.
A more categorical approach [10] models data types as initial T -algebras for a
suitable endofunctor T .

At first, it would seem that the eliminator approach is stronger, as it allows us
to define dependent functions px : Aq Ñ P pxq, in contrast with the non-dependent
arrows A Ñ B given by the initiality of the algebra. However, Hermida and
Jacobs [12] showed that an eliminator can be defined for every initial T -algebra,
where T is a polynomial functor. Ghani et. al. [9] then extended this to arbitrary
endofunctors. This covers many forms of induction and data type definitions
such as indexed inductive definitions [5] and induction-recursion [7] (Dybjer and
Setzer [8] also give a direct proof for induction-recursion).

There are, however, other meaningful forms of data types which are not covered
by these results. One such example are inductive-inductive definitions [16], where a
set A and a function B : AÑ Set are simultaneously inductively defined (compare
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with induction-recursion, where A is defined inductively and B recursively). In
addition, the constructors for B can refer to the constructors for A.

In earlier work [16], a subset of the authors gave an eliminator-based axioma-
tisation of a type theory with inductive-inductive definitions and showed it to be
consistent. In this article, we describe a generalised initial algebra semantics for
induction-induction, and prove that it is equivalent to the original axiomatisation.

One could imagine that that inductive-inductive definitions could be described
by functors mapping families of sets to families of sets (similar to the situation for
induction-recursion [8]), but this fails to take into account that the constructors
for B should be able to refer to the constructors for A. Thus, we will see that
the constructor for B can be described by an operation

ArgB : pA : SetqpB : AÑ Setqpc : ArgApA,Bq Ñ Aq Ñ ArgApA,Bq Ñ Set

where c : ArgApA,Bq Ñ A refers to the already defined constructor for A.
However, pArgA,ArgBq is then no longer an endofunctor and we move to the
more general setting of dialgebras [11, 18] to describe algebras of such functors.
The equivalence between initiality and having an eliminator still carries over to
this new setting.

1.1 Examples of Inductive-Inductive Definitions

Danielsson [4] and Chapman [3] define the syntax of dependent type theory in
the theory itself by inductively defining contexts, types in a given context and
terms of a given type. Let us concentrate on contexts and types for simplicity.
There should be an empty context ε, and if we have any context Γ and a valid
type σ in that context, then we should be able to extend the context with a fresh
variable of that type. We end up with the following inductive definition of the
set of contexts:

ε : Ctxt

Γ : Ctxt σ : TypepΓ q

Γ � σ : Ctxt

For types, let us have a base type ι (valid in any context) and a dependent
function type: if σ is a type in context Γ , and τ is a type in Γ extended with a
fresh variable of type σ (the variable from the domain), then Πpσ, τq is a type
in the original context. This leads us to the following inductive definition of
Type : Ctxt Ñ Set:

Γ : Ctxt
ιΓ : TypepΓ q

Γ : Ctxt σ : TypepΓ q τ : TypepΓ � σq

ΠΓ pσ, τq : TypepΓ q

Note that the definition of Ctxt refers to Type, so both sets have to be defined
simultaneously. Another peculiarity is how the introduction rule for Π explicitly
focuses on a specific constructor in the index of the type of τ .

For an example with more of a programming flavour, consider defining a data
type consisting of sorted lists (of natural numbers, say). With induction-induction,
we can simultaneously define the set SortedList of sorted lists and the predicate
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¤L: pN� SortedListq Ñ Set with n ¤L ` true if n is less than or equal to every
element of `.

The empty list is certainly sorted, and if we have a proof p that n is less than
or equal to every element of the list `, we can put n in front of ` to get a new
sorted list conspn, `, pq. Translated into introduction rules, this becomes:

nil : SortedList

n : N ` : SortedList p : n ¤L `

conspn, `, pq : SortedList

For ¤L, we have that every m : N is trivially smaller than every element of the
empty list, and if m ¤ n and inductively m ¤L `, then m ¤L conspn, `, pq:

trivm : m ¤L nil

q : m ¤ n pm,` : m ¤L `

! q, pm,` "m,n,`,p : m ¤L conspn, `, pq

Of course, there are many alternative ways to define such a data type using
ordinary induction, but the inductive-inductive one seems natural and might be
more convenient for some purposes. It is certainly more pleasant to work with
in the proof assistant/ programming language Agda [17] which allows inductive-
inductive definitions using the mutual keyword. One aim of our investigation
into inductive-inductive definitions is to justify their existence in Agda.

It might be worth pointing out that inductive-inductive and inductive-recursive
definitions are different. Not every inductive-inductive definition can be directly
translated into an inductive-recursive definition, since the inductive definition
of the second type B may not proceed according to the recursive ordering. The
contexts and types example above is an example of this. On the other hand,
inductive-recursive definitions can use negative occurrences of B, which is not
possible for inductive-inductive definitions. For instance, a universe closed under
Π-types can be defined using induction-recursion but not induction-induction.

1.2 Preliminaries and notation

We work in an extensional type theory [15] with the following ingredients:

Set We use Set to denote our universe of small types, and we write B : AÑ Set
for an A-indexed family of sets.

Π-types Given A : Set and B : AÑ Set, then
�
px : Aq Ñ Bpxq

�
: Set. Elements

of px : Aq Ñ Bpxq are functions f that map a : A to fpaq : Bpaq.
Σ-types Given A : Set and B : A Ñ Set, then Σx : A.Bpxq : Set. Elements

of Σx : A.Bpxq are dependent pairs xa, by where a : A and b : Bpaq. We
write π0 : Σx :A.Bpxq Ñ A and π1 : py : Σx :A.Bpxqq Ñ Bpπ0pyqq for the
projections. We write t a : A | Bpaqu for Σx : A.Bpxq if B : A Ñ Set is
propositional, i.e. there is at most one inhabitant in Bpaq for every a : A.

� Given A,B : Set, we denote their coproduct A � B with coprojections inl :
AÑ A�B and inr : B Ñ A�B. We use rf, gs for cotupling.

Equality and unit types Given a, b : A we write a � b : Set for the equality
type, inhabitated by refl if and only if a � b. In contrast, the unit type 1
always has a unique element � : 1.
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We call a type expression strictly positive in X if X never appears in the
domain of a Π-type. It is a requirement for inductive definitions in predicative
Type Theory that the inductively defined types appear only strictly positive in
the domain of the constructors.

2 Inductive-Inductive Definitions as Dialgebras

In this section, our goal is to describe each inductive-inductively defined set as
the initial object in a category constructed from a description of the set. Just as
for ordinary induction and initial algebras, this description will be a functor of
sorts, but because of the more complicated structure involved, this will no longer
be an endofunctor. The interesting complication is the fact that the constructor
for the second set B can refer to the constructor for the first set A (as for example
the argument τ : TypepΓ � σq referring to � � � in the introduction rule for the
Π-type). Thus we will model the constructor for B as (the second component
of) a morphism pc, dq : ArgpA,B, cq Ñ pA,Bq where c : ArgApA,Bq Ñ A is the
constructor for A. Here, pc, dq is a morphism in the category of families of sets:

Definition 2.1. The category FampSetq of families of sets has as objects pairs
pA,Bq, where A is a set and B : A Ñ Set is an A-indexed family of sets.
A morphism from pA,Bq to pA1, B1q is a pair pf, gq where f : A Ñ A1 and
g : px : Aq Ñ Bpxq Ñ B1pfpxqq.

Note that there is a forgetful functor U : FampSetq Ñ Set sending pA,Bq to A
and pf, gq to f . Now, c : ArgApA,Bq Ñ A is not an ArgA-algebra, since ArgA :
FampSetq Ñ Set is not an endofunctor. However, we have c : ArgApA,Bq Ñ
UpA,Bq. This means that c is a pArgA, Uq-dialgebra, as introduced by Hagino [11]:

Definition 2.2. Let F,G : C Ñ D be functors. The category DialgpF,Gq has as
objects pairs pA, fq where A P C and f : F pAq Ñ GpAq. A morphism from pA, fq
to pA1, f 1q is a morphism h : AÑ A1 in C such that Gphq � f � f 1 � F phq.

There is a forgetful functor V : DialgpF,Gq Ñ C defined by V pA, fq � A.
Putting things together, we will model the constructor for A as a morphism

c : ArgApA,Bq Ñ A in Set and the constructor for B as the second component
of a morphism pc, dq : ArgpA,B, cq Ñ pA,Bq in FampSetq. Thus, we see that the
data needed to describe pA,Bq as inductively generated with constructors c, d
are the functors ArgA and Arg. However, we must also make sure that the first
component of Arg coincides with ArgA, i.e. that U � Arg � ArgA � V .

Definition 2.3. An inductive-inductive definition is given by two functors

ArgA : FampSetq Ñ Set Arg : DialgpArgA, Uq Ñ FampSetq

such that U � Arg � ArgA � V .

Since the first functor is determined by the second, we often write such a pair as
Arg � pArgA,ArgBq where

ArgB : pA : SetqpB : AÑ Setqpc : ArgApA,Bq Ñ Aq Ñ ArgApA,Bq Ñ Set .
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Example 2.4 (Contexts and types). The inductive-inductive definition of Ctxt :
Set and Type : Ctxt Ñ Set from the introduction is given by

ArgCtxtpA,Bq � 1�Σ Γ :A.BpΓ q

ArgTypepA,B, c, xq � 1�Σ σ :Bpcpxqq. Bpcpinrpcpxq, σqqq .

For ArgCtxt, the left summand 1 corresponds to the constructor ε taking no argu-
ments, and the right summand Σ Γ :A.BpΓ q corresponds to �’s two arguments
Γ : Ctxt and σ : TypepΓ q. Similar considerations apply to ArgType.

Example 2.5 (Sorted lists). The sorted list example does not fit into our frame-
work, since ¤L: pN � SortedListq Ñ Set is indexed by N � SortedList and not
simply SortedList. It is however straightforward to generalise the construction to
include this example as well: instead of considering ordinary families, consider
“N�A-indexed” families pA,Bq where A is a set and B : pN � Aq Ñ Set. The
inductive-inductive definition of SortedList : Set and ¤L: pN�SortedListq Ñ Set
is then given by

ArgSListpA,Bq � 1� pΣ n :N. Σ ` :A.Bpn, `qq

Arg¤L
pA,B, c,m, inlp�qq � 1

Arg¤L
pA,B, c,m, inrpxn, `, pyqq � Σm ¤ n.Bpm, `q .

For ease of presentation, we will only consider ordinary families of sets.

2.1 A Category for Inductive-Inductive Definitions

Given Arg � pArgA,ArgBq representing an inductive-inductive definition, we will
now construct a category EArg whose initial object (if it exists) is the intended
interpretation of the inductive-inductive definition. Figure 1 summarises the
functors and categories involved (U , V and W are all forgetful functors).

Set FampSetq

ArgA

yy

U

ee DialgpArgA, Uq

Arg

uu

V

ii DialgpArg, V q

pV,Uq

tt

W

jj
EArg? _oo

Fig. 1. The functors and categories involved.

One might think that the category we are looking for is DialgpArg, V q, where
V : DialgpArgA, Uq Ñ FampSetq is the forgetful functor. DialgpArg, V q has
objects pA,B, c, pd0, d1qq, where A : Set, B : AÑ Set, c : ArgApA,Bq Ñ A and
pd0, d1q : ArgpA,B, cq Ñ pA,Bq. The function d0 : ArgApA,Bq Ñ A looks like
the constructor for A that we want, but

d1 : px : ArgApA,Bqq Ñ ArgBpA,B, c, xq Ñ Bpd0pxqq
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does not look quite right – we need c and d0 to be the same!
To this end, we will consider the equalizer of the forgetful functor W :

DialgpArg, V q Ñ DialgpArgA, Uq, W pA,B, c, pd0, d1qq � pA,B, cq, and the func-
tor pV,Uq defined by

pV,UqpA,B, c, pd0, d1qq :� pV pA,B, cq, Upd0, d1qq � pA,B, d0q

pV,Uqpf, gq :� pf, gq

Note that Upd0, d1q : UpArgpA,B, cqq Ñ UpV pA,B, cqq but U � Arg � ArgA �
V , so that Upd0, d1q : ArgApV pA,B, cqq Ñ UpV pA,B, cqq. In other words,
pV pA,B, cq, Upd0, d1qq is an object in DialgpArgA, Uq, so pV,Uq really is a functor
from DialgpArg, V q to DialgpArgA, Uq.

Definition 2.6. For Arg � pArgA,ArgBq representing an inductive-inductive
definition, let EArg be the underlying category of the equaliser of pV,Uq and the
forgetful functor W : DialgpArg, V q Ñ DialgpArgA, Uq.

Explicitly, the category EArg has

– Objects pA,B, c, dq, where A : Set, B : A Ñ Set, c : ArgApA,Bq Ñ A,
d : px : ArgApA,Bqq Ñ ArgBpA,B, c, xq Ñ Bpcpxqq.

– Morphisms from pA,B, c, dq to pA1, B1, c1, d1q are morphisms
pf, gq : pA,B, cq ñDialgpArgA,Uq

pA1, B1, c1q such that in addition

gpcpxq, dpx, yqq � d1pArgApf, gqpxq,ArgBpf, gqpx, yqq .

Example 2.7. Consider the functors ArgCtxt, ArgType from Example 2.4:

ArgCtxtpA,Bq � 1�Σ Γ :A.BpΓ q

ArgTypepA,B, c, xq � 1�Σ σ :Bpcpxqq. Bpcpinrpcpxq, σqqq .

An object in EpArgCtxt,ArgTypeq
consists of A : Set, B : A Ñ Set and morphisms

c � rεA,B ,�A,Bs and d � λΓ.rιA,BpΓ q, ΠA,BpΓ qs which can be split up into3

εA,B : 1 Ñ A , �A,B :
�
pΓ : Aq �BpΓ q

�
Ñ A ,

ιA,B : pΓ : ArgCtxtpA,Bqq Ñ 1 Ñ BpcpΓ qq ,

ΠA,B : pΓ : ArgCtxtpA,Bqq Ñ
�
pσ : BpcpΓ qqq � pτ : Bp�A,BpcpΓ q, σqqq

�
Ñ BpcpΓ qq .

Remark 2.8. The intended interpretation of the inductive-inductive definition
given by Arg � pArgA,ArgBq is the initial object in EArg. Depending on the
meta-theory, this might of course not exist. However, we will show that it does if
and only if an eliminator for the inductive-inductive definition exists.

3 Notice that ιA,B : pΓ : ArgCtxtpA,Bqq Ñ . . . and not ιA,B : pΓ : Aq Ñ . . . as one
would maybe expect. There is no difference for initial A, as we have ArgCtxtpA,Bq � A
by (a variant of) Lambek’s Lemma.
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Remark 2.9. From Figure 1, it should be clear how to generalise the current
construction to the simultaneous definition of A : Set, B : AÑ Set, C : px : Aq Ñ
Bpxq Ñ Set, etc.: for a definition of n sets, replace FampSetq with the category
FAMn of families pA1, A2, A3, . . . , Anq and consider ArgA : FAMn Ñ Set, Arg :
DialgpArgA, Uq Ñ FampSetq, ArgC : EArg Ñ FAM3, . . . taking an equalizer where
necessary to make the constructors in different positions equal.

2.2 How to Exploit Initiality: an Example

Let us consider an example of how to use initiality to derive a program dealing
with the contexts and types from the introduction. Suppose that we want to
define a concatenation �� : Ctxt Ñ Ctxt Ñ Ctxt of contexts – such an operation
could be useful to formulate more general formation rules, such as:

σ : TypepΓ q τ : Typep∆q

σ � τ : TypepΓ ��∆q

Such an operation should satisfy the equations

∆ �� ε � ∆
∆ �� pΓ � σq � p∆�� Γ q�(wkΓ pσ,∆q) ,

where wk : pΓ : Ctxtq Ñ pσ : TypepΓ qq Ñ p∆ : Ctxtq Ñ Typep∆ �� Γ q is a
weakening operation, i.e. if σ : TypepΓ q, then wkΓ pσ,∆q : Typep∆ �� Γ q. A
moment’s thought should convince us that we want wk to satisfy

wkΓ pιΓ , ∆q � ι∆��Γ

wkΓ pΠΓ pσ, τq, ∆q � Π∆��Γ pwkΓ pσ,∆q,wkΓ�σpτ,∆qq .

Our hope is now to exploit the initiality of pCtxt,Typeq to get such operations.
Recall from Example 2.4 that Ctxt, Type are the underlying sets for the inductive-
inductive definition given by the functors

ArgCtxtpA,Bq � 1�Σ Γ :A.BpΓ q

ArgTypepA,B, c, xq � 1� pΣ σ :Bpcpxqq. τ :Bpcpinrpcpxq, σqqqq .

From the types of �� : Ctxt Ñ Ctxt Ñ Ctxt and wk : pΓ : Ctxtq Ñ pA :
TypepΓ qq Ñ p∆ : Ctxtq Ñ Typep∆ �� Γ q, we see that if we can equip pA,Bq
where A � Ctxt Ñ Ctxt and Bpfq � p∆ : Ctxtq Ñ Typepfp∆qq with an
pArgCtxt,ArgTypeq structure, initiality will give us functions of the right type. Of
course, we must choose the right structure so that our equations will be satisfied:

inA : ArgCtxtpA,Bq Ñ A
inApinlp�qq � λ∆.∆
inApinrpxf, gyqq � λ∆. pfp∆q � gp∆qq ,

inB : px : ArgCtxtpA,Bqq Ñ ArgTypepA,B, inA, xq Ñ BpinApxqq
inBp∆, inlp�qq � λΓ. ιinAp∆qpΓ q
inBp∆, inrpxg, hyqq � λΓ.ΠinAp∆qpΓ qpgpΓ q, hpΓ qq .
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Since pA,B, inA, inBq is an object in EArg, initiality gives us a morphism
p��,wkq : pCtxt,Typeq Ñ pA,Bq such that p��,wkq � prε,�s, rι,Πsq �
pinA, inBq � pArgCtxt,ArgTypeqp��,wkq. In particular, this means that

��pεq � inApArgCtxtp��,wkqpinlp�qqq � inApinlp�qq � λ∆.∆

��pΓ � σq � inApArgCtxtp��,wkqpinrpxΓ, σyqqq � inApinrpx��pΓ q,wkpΓ, σqyqq

� λ∆.�� pΓ,∆q � wkpΓ, σ,∆q .

Thus, we see that ∆ �� ε � ∆ and ∆ �� pΓ � σq � p∆ �� Γ q � wkΓ pσ,∆q as
required.4 In the same way, the equations for the weakening operation hold.

2.3 Relationship to induction-induction as axiomatised in [16]

In short, the earlier axiomatisation [16] postulated the existence of a universes
SP1

A, SP1
B of codes for inductive-inductive sets, together with decoding functions

Arg1A, Arg1B and Index1B. Intuitively, Arg1A gives the domain of the constructor
introA for A, Arg1B the domain for the constructor introB for B and Index1Bpxq
the index of the type of introBpxq. More formally, they have types

Arg1A : pγA : SP1
AqpA : SetqpB : AÑ Setq Ñ Set ,

Arg1B : pγA : SP1
AqpγB : SP1

BpγAqq

Ñ pA : SetqpB0 : AÑ SetqpB1 : Arg1ApγA, A,B0q Ñ Setq

Ñ . . .Ñ pBn : Arg1nA pγA, A, ~Bpnqq Ñ Setq Ñ Set ,

Index1BpγA, γB , A,B0, . . . , Bnq :

Arg1BpγA, γB , A,B0, . . . , Bnq Ñ
i 
i�0

Arg1nA pγA, A,
~Bpiqq ,

where ~Bpiq � pB0, . . . , Bi�1q and Arg1iApγA, A,Bpiqq is defined by

Arg10ApγA, A,Bp0qq :� A

Arg1n�1
A pγA, A, ~Bpnq,Bn�1

q :� Arg1ApγA,
n 
i�0

Arg1iApγA, A, ~Bpiqq, rB0, . . . , Bnsq .

The axiomatisation then states that we have introduction and elimination
rules, i.e. that for each code γ � pγA, γBq there exists is a family Aγ : Set, Bγ :
Aγ Ñ Set with constructors introA : Arg1ApγA, Aγ , Bγq Ñ Aγ and introB : px :
Arg1Bpγ,Aγ , Bγ , B1, . . . , Bnqq Ñ Bγpindexpxqq, and a suitable eliminator (see Sec-
tion 3). Here,Bi � B�ki and indexpxq � rk0, . . . , knspIndex1Bpγ,A,B0, . . . , Bn, xqq
where k0 � id and ki�1 � introA �Arg1iAprk0, . . . , kis, rid

1, . . . , id1sq. The codes are
chosen so that all occurrences of A and B in the domains of introA and introB
are strictly positive.

The relationship between the codes from this axiomatisation and the formali-
sation in this article can now be summed up in the following proposition:

4 Actually, the order of the arguments is reversed, so we would have to define
∆��1 Γ :��� pΓ,∆q.
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Proposition 2.10. For each code γ � pγA, γBq, the operations ArgγA : FampSetq Ñ
Set and Argγ � pArgγA ,ArgγBq : DialgpArgγA , Uq Ñ FampSetq given by

ArgγApA,Bq :� Arg1ApγA, A,Bq ,

ArgγBpA,B, c, xq :� t y :Arg1BpγA, γB , A,B0, . . . , Bnq | cpxq � indexpyqu

are functorial. [\

We will call a functor F strictly positive if it arises as F � Argγ for some code γ.
In Section 3.3 , we show that that the original introduction and elimination rules
hold if and only if EArgγ has an initial object.

3 The Elimination Principle

In this section, we introduce the elimination principle for inductive-inductive
definitions. We show that every initial object has an eliminator (Proposition 3.8),
and that every object with an eliminator is weakly initial (Proposition 3.9). Under
the added assumption of strict positivity, we can also show uniqueness. Hence
the two notions are equivalent for strictly positive functors (Theorem 3.10).

3.1 Warm-up: a Generic Eliminator for an Inductive Definition

The traditional type-theoretical way of defining recursive functions like the
context concatenation �� in Section 2.2 is to define them in terms of eliminators.
Roughly, the eliminator for an F -algebra pA, cq is a term

P : AÑ Set stepc : px : F pAqq Ñ lF pP, xq Ñ P pcpxqq

elimF pP, stepcq : px : Aq Ñ P pxq

with computation rule elimF pP, stepc, cpxqq � stepcpx, dmapF pP, elimpP, stepcq, xqq.
Here, lF pP q : F pAq Ñ Set is the type of inductive hypothesis for P ; it consists
of proofs that P holds at all F -substructures of x, and dmapF pP q : px : F pAq Ñ
P pxqq Ñ px : F pAqq Ñ lF pP, xq takes care of recursive calls.

Example 3.1. Let F pXq � 1 �X, i.e. F is the functor whose initial algebra is
pN, r0, sucsq. We then have

l1�XpP, inlp�qq � 1 l1�XpP, inrpnqq � P pnq

so that the eliminator for pN, r0, sucsq becomes

P : N Ñ Set
step0 : 1 Ñ P p0q

stepsuc : pn : Nq Ñ P pnq Ñ P psucpnqq

elim1�XpP, step0, stepsucq : px : Nq Ñ P pxq
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For polynomial functors F , lF can be defined inductively over the structure
of F as is given in e.g. Dybjer and Setzer [8]. However, lF and dmapF can be
defined for any functor F : Set Ñ Set by defining

lF pP, xq :� ty : F pΣ z :A.P pzqq|F pπ0qpyq � xu

dmapF pP, stepc, xq :� F pλy.xy, stepcpyqyqpxq .

We see that indeed l1�XpP, inlp�qq � 1 and l1�XpP, inrpnqq � P pnq as in
Example 3.1.

3.2 The Generic Eliminator for an Inductive-Inductive Definition

Let us now generalise the preceding discussion from inductive definitions (i.e.
endofunctors on Set) to inductive-inductive definitions (i.e. functors Arg �
pArgA,ArgBq as in Definition 2.3). Since we replace the carrier set A with a carrier
family pA,Bq, we should also replace the predicate P : AÑ Set with a “predicate
family” pP,Qq where P : AÑ Set and Q : px : Aq Ñ Bpxq Ñ P pxq Ñ Set. This
forces us to refine the step function stepc : px : F pAqq Ñ lF pP, xq Ñ P pcpxqq
into two functions

stepc : px : ArgApA,Bqq Ñ lArgApP,Q, xq Ñ P pcpxqq ,

stepd : px : ArgApA,Bqq Ñ py : ArgBpA,B, c, xqq Ñ prx : lArgApP,Q, xqq

Ñ lArgBpP,Q, c, stepc, x, y, rxq Ñ Qpcpxq, dpx, yq, stepcpx, rxqq .
As can already be seen in the types of stepc and stepd above, we replace lF with
lArgA and lArgB of type

lArgApP,Qq : ArgApA,Bq Ñ Set ,

lArgBpP,Qq :
�
stepc : px : ArgApA,Bqq Ñ lArgApP,Q, xq Ñ P pcpxqq

�
Ñ

px : ArgApA,Bqq Ñ py : ArgBpA,B, c, xqq Ñ

prx : lArgApP,Q, xqq Ñ Set

and we replace dmapF with dmapArgA
, dmapArgB

of type

dmapArgA
pP,Qq :

�
f : px : Aq Ñ P pxq

�
Ñ�

g : px : Aq Ñ py : Bpxqq Ñ Qpx, y, fpxqq
�
Ñ

px : ArgApA,Bqq Ñ lArgApP,Q, xq

dmapArgB
pP,Qq :

�
stepc : px : ArgApA,Bqq Ñ lArgApP,Q, xq Ñ P pcpxqq

�
Ñ�

f : px : Aq Ñ P pxq
�
Ñ�

g : px : Aq Ñ py : Bpxqq Ñ Qpx, y, fpxqq
�
Ñ

px : ArgApA,Bqq Ñ py : ArgBpA,B, c, xqq

Ñ lArgBpP,Q, stepc, x, y, dmapArgA
pP,Q, f, g, xqq .

We can define lArgA , lArgB , dmapArgA
and dmapArgB

for arbitrary functors
representing inductive-inductive definitions. First, define:
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Definition 3.2. Let pA,Bq P FampSetq, P : A Ñ Set, Q : px : Aq Ñ Bpxq Ñ
P pxq Ñ Set.

(i) Define ΣFampSetqpA,Bq pP,Qq P FampSetq by

ΣFampSetqpA,Bq pP,Qq :� pΣ A P, λxa, py.Σb :Bpaq. Qpa, b, pqq

(ii) In addition, for pf, gq : pA,Bq Ñ pA1, B1q and

h : px : Aq Ñ P pfpxqq k : px : Aq Ñ py : Bpxqq Ñ Qpfpxq, gpx, yq, hpxqq ,

define xpf, gq, ph, kqy : pA,Bq Ñ ΣFampSetqpA
1, B1q pP,Qq by

xpf, gq, ph, kqy :� pλx. xfpxq, hpxqy, λx y. xgpx, yq, kpx, yqyq .

(iii) For h : px : Aq Ñ P pxq and k : px : Aq Ñ py : Bpxqq Ñ Qpx, y, hpxqq, define
ph, kq : pA,Bq Ñ ΣFampSetqpA,Bq pP,Qq by ph, kq :� xid, ph, kqy.

We have pπ0, π
1
0q :� pπ0, λx. π0q : ΣFampSetqpA,Bq pP,Qq Ñ pA,Bq with pπ0, π

1
0q�

ph, kq � id. Note also that we can extend ΣFampSetq to morphisms by defining
rpf, gq, ph, kqs : ΣFampSetqpA,Bq pP,Qq Ñ ΣFampSetqpA

1, B1q pP 1, Q1q for appro-
priate f, g, h, k by rpf, gq, ph, kqs � xpf, gq � pπ0, π

1
0q, ph, kqy. We can now define

lArgA and dmapArgA
:

Definition 3.3. Define lArgA and dmapArgA
with types as above by

lArgApP,Q, xq :� ty : ArgApΣFampSetqpA,Bq pP,Qqq |ArgApπ0, π
1
0qpyq � xu ,

dmapArgA
pP,Q, f, gq :� ArgAppf, gqq .

Note that we have an isomorphism

ϕArgA : ArgApΣFampSetqpA,Bq pP,Qqq Ñ Σ x :ArgApA,Bq.lArgApP,Q, xq

defined by ϕArgApxq � xArgApπ0, π
1
0qpxq, xy.

Definition 3.4. Given P , Q, stepc, x, y, rx as above, define

(i) ΣDialgpA,B, cq pP,Q, stepcq :� pΣFampSetq pA,Bq pP,Qq, rc, stepcs � ϕArgAq,
(ii) lArgBpP,Q, stepc, x, y, rxq :�

tz : ArgBppΣDialgpA,B, cq pP,Q, stepcqq, rxq | ArgBpπ0, π
1
0, rx, zq � yu,

(iii) dmapArgB
pP,Q, stepc, f, gq :� ArgBppf, gqq.

We can now define what the eliminators for inductive-inductive definitions are:

Definition 3.5. We say that pA,B, c, dq in EArg has an eliminator, if there exist
two terms

P : AÑ Set
Q : px : Aq Ñ Bpxq Ñ P pxq Ñ Set

stepc : px : ArgApA,Bqq Ñ lArgApP,Q, xq Ñ P pcpxqq

stepd : px : ArgApA,Bqq Ñ py : ArgBpA,B, c, xqq Ñ prx : lArgApP,Q, xqq

Ñ lArgBpP,Q, c, stepc, x, y, rxq Ñ Qpcpxq, dpx, yq, stepcpx, rxqq
elimArgApP,Q, stepc, stepdq : px : Aq Ñ P pxq

elimArgBpP,Q, stepc, stepdq : px : Aq Ñ py : Bpxqq Ñ Qpx, y, elimArgApP,Q, stepc, stepd, xqq
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with

elimArgApP,Q, stepc, stepd, cpxqq � stepcpx, dmap1ArgA
q

elimArgBpP,Q, stepc, stepd, cpxq, dpx, yqq � stepdpx, y, dmap1ArgA
, dmap1ArgB

q

where

dmap1ArgA
� dmapArgA

pelimArgApP,Q, stepc, stepdq, elimArgBpP,Q, stepc, stepdq, xq

dmap1ArgB
� dmapArgB

pstepc, elimArgApP,Q, stepc, stepdq, elimArgBpP,Q, stepc, stepdq, x, yq .

Example 3.6 (The eliminator for sorted lists). Recall from Example 2.5 that
sorted lists were given by the functors ArgSList, Arg¤L

, where

ArgSListpA,Bq � 1� pΣ n :N. Σ ` :A.Bpn, `qq

Thus, we see that e.g.

lArgSList
pP,Q, inlp�qq � ty : 1� . . . | pid � . . .qpyq � inlp�qu � 1

lArgSList
pP,Q, inrpxn, `, pyqq �

ty : Σ n1 :N. Σ x`1, r̀y :pΣAP q. Σp1 :Bpn, `q. Qpn1, `1, p1, r̀q | Σpid, Σpπ0, π10qqpyq � xn, `, pyu

� Σ r̀:P p`q. Qpn, `, p, r̀q
and similarly for lArg¤L

, so that the eliminators are equivalent to

elimSortedList : pP : SortedList Ñ Setq Ñ

pQ : pn : Nq Ñ p` : SortedListq Ñ n ¤L `Ñ P p`q Ñ Setq Ñ

pstepnil : P pnilqq Ñ�
stepcons : pn : Nq Ñ p` : SortedListq Ñ pp : n ¤L `q Ñ pr̀ : P p`qq

Ñ Qpn, `, p, r̀q Ñ P pconspn, `, pqq
�
Ñ�

steptriv : pn : Nq Ñ Qpn, nil, trivn, stepnilq
�
Ñ�

step!�" : pm : Nq Ñ pn : Nq Ñ p` : SortedListq Ñ pp : n ¤L `q

Ñ pq : m ¤ nq Ñ pp1 : m ¤L `q Ñ pr̀ : P p`qq

Ñ prp : Qpn, `, p, r̀qq Ñ prp1 : Qpm, `, p1, r̀qq
Ñ Qpm, conspn, `, pq,! q, p1 "p,m,n,`, stepconspn, `, p,

r̀, rpqq�Ñ
p` : SortedListq Ñ P p`q ,

elim¤L
: . . .Ñ

pn : Nq Ñ p` : SortedListq Ñ pp : n ¤L `q

Ñ Qpn, `, p, elimSortedListpP,Q, stepnil, stepcons, steptriv , step!�", `qq .

3.3 The Equivalence Between Having an Eliminator and Being
Initial

We now prove the promised equivalence. In what follows, let Arg � pArgA,ArgBq
be functors for an inductive-inductive definition.
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Lemma 3.7. There is an isomorphism

ϕArg � pϕArgA , ϕArgBq : ArgpΣDialgpA,B, cq pP,Q, stepcqq

Ñ ΣFampSetqArgpA,B, cq plArgpP,Q, stepcqq

such that pπ0, π
1
0q � ϕArg � Argpπ0, π

1
0q and

ϕArg � Argppf, gqq � pdmapArgApP,Q, f, gq, dmapArgB
pP,Q, stepc, f, gqq . [\

Proposition 3.8. Every initial object pA,B, c, dq in EArg has an eliminator.

Proof. Let P , Q, stepc, stepd as in the type signature for elimArgA and elimArg be
given. Define inΣ : ArgpΣDialgpA,B, cq pP,Q, stepcqq Ñ V pΣDialgpA,B, cq pP,Q, stepcqq
by inΣ � rpc, dq, pstepc, stepdqs � ϕArg. This makes ΣDialgpA,B, cq pP,Q, stepcq
an object of EArg.

Since pA,B, c, dq is initial in EArg, we get a morphism (h, h1q : pA,Bq Ñ
ΣFampSetqpA,Bq pP,Qq which makes the top part of the following diagram com-
mute:

ArgpA,B, cq
pc,dq //

Argph,h1q

��

pA,Bq

ph,h1q

��
ArgpΣpA,B, cq pP,Q, stepcqq

ϕArg //

Argpπ0,π
1

0q

��

ΣArgpA,B, cq plpP,Q, stepcqq
rpc,dq,pstepc,stepdqs

//

pπ0,π
1

0qssggggggggggggggggggggg
ΣpA,Bq pP,Qq

pπ0,π
1

0q

��
ArgpA,B, cq

pc,dq
// pA,Bq

The bottom part commutes by Lemma 3.7 and calculation. Hence pπ0, π
1
0q �

ph, h1q is a morphism in EArg and we must have pπ0, π
1
0q � ph, h

1q � id by ini-
tiality. Thus π1 � h : px : Aq Ñ P pxq and π1ph

1px, yqq : Qpx, y, π1phpxqqq for
x : A, y : Bpxq, so we can define elimArgApP,Q, stepc, stepdq � π1 � h and
elimArgBpP,Q, stepc, stepd, x, yq � π1ph

1px, yqq.
To verify the computation rules, note that since pπ0, π

1
0q � ph, h

1q � id, we
have ph, h1q � pπ1, π11q � ph, h

1q. We only show the calculation for ArgA:

elimArgApP,Q, stepc, stepd, cpxqqq � π1phpcpxqqq

� stepcpϕArgApArgAph, h
1qpxqqq

� stepcpϕArgApArgAppπ1, π
1
1q � ph, h

1qqpxqqq

� stepcpx, dmapArgA
ppπ1, π

1
1q � ph, h

1qqpxqq

� stepcpx, dmap1ArgA
q [\

Proposition 3.9. Every pA,B, c, dq with an eliminator is weakly initial in EArg.

Proof. Let pA1, B1, c1, d1q be another object in EArg. Notice that for P pxq � A1,
Qpx, y, rxq � B1prxq, the usually dependent second projections π1, π

1
1 become non-

dependent and make up a morphism pπ1, π
1
1q : ΣFampSetqpA,Bq pP,Qq Ñ pA1, B1q.

Since

π1 � rc, c
1 � ArgApπ1, π

1
1q � ϕ

�1
ArgA

s � ϕArgA � c1 � ArgApπ1, π
1
1q ,
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this lifts to pπ1, π
1
1q : ΣDialgpA,B, cq pP,Q, c

1�ArgApπ1, π
1
1q�ϕ

�1
ArgA

q Ñ pA1, B1, c1q.

By currying pf, gq :� pc1, d1q � Argpπ1, π
1
1q � ϕ

�1
Arg, we get

pf : px : ArgApA,Bqq Ñ lArgApP,Q, xq Ñ A1

pg : px : ArgApA,Bqq Ñ py : ArgBpA,B, c, xqq Ñ prx : lArgApP,Q, xqq

Ñ lArgBpP,Q, c,
pf, x, y, rxq Ñ B1p pfpx, rxqq

so that ph, h1q :� pelimArgApP,Q,
pf, pgq, elimArgBpP,Q,

pf, pgqq : pA,Bq Ñ pA1, B1q.
We have to check that ph, h1q � pc, dq � pc1, d1q � Argph, h1q.

ph, h1q � pc, dq � pelimArgApP,Q,
pf, pgq, elimArgBpP,Q,

pf, pgqq � pc, dq
� p pf, pgq � pdmapArgA

ph, h1q,dmapArgB
ph, h1qq

� p pf, pgq � ϕArg � Argph, h1q

� pc1, d1q � Argpπ1, π
1
1q � Argph, h1q

� pc1, d1q � Argph, h1q [\

For strictly positive functors, we can say more, since we can argue by induction
over their construction:

Theorem 3.10. The functors Argγ � pArgγA ,ArgγBq from the original axioma-
tisation as described in Section 2.3 have eliminators if and only if EArgγ has an
initial object.

Proof. Putting Proposition 3.8 and Proposition 3.9 together, all that is left to
prove is that given an eliminator, the arrow ph, h1q we construct is actually unique.
Assume that pk, k1q is another arrow with pk, k1q � pc, dq � pc1, d1q � Argγpk, k

1q.
We use the eliminator (and extensional equality) to prove that ph, h1q �

pk, k1q; let P pxq � phpxq � kpxqq and Qpx, y, rxq � ph1px, yq � k1px, yqq. It is
enough to prove P pcpxqq and Qpcpxq, dpx, yq, q for arbitrary x : ArgγApA,Bq, y :
ArgγBpA,B, c, xq, given the induction hypothesis lArgApP,Qq and lArgBpP,Qq.
By induction on the buildup of ArgγA and ArgγB , we can prove that lArgApP,Qq
and lArgBpP,Qq give that Argph, h1q � Argpk, k1q , and hence

ph, h1q � pc, dq � pc1, d1q � Argph, h1q � pc1, d1q � Argpk, k1q � pk, k1q � pc, dq .

Using the elimination principle, we conclude that ph, h1q � pk, k1q. [\

4 Conclusions and Future Work

We have shown how to give a categorical semantics for inductive-inductive
definitions, a principle for defining data types in Martin-Löf Type Theory. In
order to do this, we generalised the usual initial algebra semantics to a dialgebra
setting and showed that there is still an equivalence between this semantics and
the more traditional formulation in terms of elimination and computation rules.
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Future work includes extending the notion of containers [1] to inductive-
inductive definitions. We also conjecture that W-types are enough to ensure
the existence of inductive-inductive definitions in an extensional theory. More
precisely, it should be possible to interpret inductive-inductive definitions as
indexed inductive definitions, for which W-types are enough [2].

It could also be worthwhile to generalise this work to a unified setting
including other forms of inductive definitions: let F,G : C Ñ D be functors
between categories having all finite limits. One can then extend C and D to
Categories with Families [6, 13] and use that structure to define the concept of an
eliminator for F and G. If G is left exact, one can show that having an eliminator
and being initial in (a subcategory of) DialgpF,Gq is equivalent.
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