
Verifying Correctness of Smart Contracts with
Conditionals

1st Fahad Alhabardi
Department of Computer Science

Swansea University
Swansea, United Kingdom
fahadalhabardi@gmail.com

2nd Bogdan Lazar
School of Management

University of Bath
Bath, United Kingdom

lazarbogdan90@yahoo.com

3rd Anton Setzer
Department of Computer Science

Swansea University
Swansea, United Kingdom
a.g.setzer@swansea.ac.uk

Abstract—In this paper, we specify and verify the correctness
of programs written in Bitcoin’s smart contract SCRIPT in the
interactive theorem prover Agda. As in the previous article [1], we
use weakest preconditions of Hoare logic to specify the security
property of access control, and show how to develop human-
readable specifications. In this article, we include conditionals
into the language. For the operational semantics we use an
additional stack, the ifstack, to deal with nested conditionals.
This avoids the addition of extra jump instructions, which are
usually used for the operational semantics of conditionals in
Forth-style stack languages. The ifstack preserves the original
nesting of conditionals, and we determine an ifthenselse-theorem
which allows to derive verification conditions of conditionals by
referring to conditions for the if- and else-case.

Index Terms—Bitcoin, Bitcoin script, smart contracts, secu-
rity, cryptocurrency, blockchain control flow, Agda, operational
semantics, Hoare logic, weakest precondition, access control

I. INTRODUCTION

Blockchain is a decentralized, distributed ledger containing
blocks of records linked by hashes. It operates through im-
mutable peer-to-peer technology in a trustless environment.
Besides creating a cryptocurrency, the blockchain allows the
development of several use-cases due to the creation of smart
contracts.

Satoshi Nakamoto [2] introduced Bitcoin in 2008 as a
cryptocurrency that provides a private anonymous payment
mechanism in a peer-to-peer network. Several cryptocurrencies
have been introduced since [3], with Ethereum extending smart
contracts to a Turing complete language.

Smart contracts [4] extend simple transactions of cryp-
tocurrencies by allowing the addition of programs. Smart
contracts can be defined as programs automatically executed
when certain conditions are fulfilled on the blockchain. Various
smart contract languages have been developed. For example,
Bitcoin smart contracts are written in SCRIPT [5], a low-level
language. In Ethereum Solidity [6] and Vyper [7] are two high
level smart contract languages, which compile to the low level
language of the Ethereum Virtual Machine. The smart contract
language of Cardano is Plutus [8], a high-level language based
on the functional language Haskell.

Smart contracts face several challenges, particularly security
[9], because once a smart contracts has been published on
the blockchain network, its code and published transactions

referring to it are immutable. This means developers must
ensure code security. If any errors are discovered, there is
no direct way to correct the code, and cyber criminals may
take advantage of these errors. As a result, ensuring that the
smart contract is functioning properly before deploying it to
the network is critical, as errors can be extremely costly. There
are two formal ways to verify smart contract’s correctness and
security [10]: (1) using mathematical methods like theorem
proving or (2) conducting test cases.

In this paper, we use Agda [11], an interactive theorem
prover, which is both a functional programming language
and a proof assistant. As a result, Agda enables us to build
programs and reason about them within the same system. This
decreases the risk of errors when converting programs from a
programming language to a theorem prover and enables smart
contracts to be executed directly in Agda.

Bitcoin Script is based on a Forth-style stack machine. Our
operational semantics differs from the conventional method of
dealing with such languages, which consists of first replac-
ing conditionals in Forth-style programs by conditional and
nonconditional jumps. Instead we use an ifstack to operate
directly on the script. Therefore the structure of the script is
preserved, and we can define theorems which from verification
conditions for the if-case and else-case of a conditional derive
the verification condition for the conditional.

The remaining part of this paper is structured as follows:
Sect. II introduces related work. In Sect. III, we give an
overview of the proof assistant Agda. Then, we introduce
Bitcoin Script and define its operational semantics in Sect. IV.
We present our definition of the Hoare logic in Sect. V. We
then introduce in Sect. VI an ifthenelse-theorem and apply it
to the verification of a conditional consisting of two P2PKH
scripts. We finish with a conclusion in Sect. VII.

Git repository. This work has been formalized and full
proofs have been carried out in the proof assistant Agda. The
code can be found at [12].

II. RELATED WORK

In this section, we will discuss the smart contract verifi-
cation studies that are relevant to our approach. We begin
by reviewing papers that discuss the verification of smart
contracts using theorem provers. Then, we demonstrate various
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techniques used to verify smart contracts, such as symbolic
execution and model checking. A more extended review of
the literature can be found in our previous paper [1].

Using theorem provers to verify smart contracts. Several
authors have discussed approaches related to verifying the
correctness of smart contracts. Hirai [13] developed a formal
EVM model in the Lem programming language [14] and used
Isabelle/Higher-Order Logic (HOL) [15] as a theorem prover
to verify EVM bytecode. He utilized this approach to prove
Ethereum smart contracts’ safety. Zheng et al. [16] developed
FSPVM-E, a formal symbolic process virtual machine that
verifies smart contracts’ dependability, security, and function.
FSPVM-E comprises a broad, extendable, and reusable formal
memory framework; an extensible programming language
called Lolisa which uses generalized algebraic data types;
and a formally verified interpreter of Lolisa called FEther.
The self-correctness of the components described before is
certified through Coq [17]. FSPVM-E supports ERC20 and can
symbolically run Ethereum-based smart contracts, scan their
vulnerabilities, and validate their dependability and security
using Hoare logic in Coq. Annenkov et al. [18] incorporated
functional languages in Coq by employing meta-programming.
After that, they developed the language’s meta-theory with
deep embedding and reasoning about concrete programs with
shallow embedding. Then, they developed a fundamental
smart contract language in Coq and validated a crowdfunding
contract’s characteristics. Lamela et al. [19] developed the
domain-specific language Marlowe for financial contracts.
This language was developed on the Cardano blockchain. Mar-
lowe was utilized to ensure that any smart contracts created in
this language would conserve funds. This means that except
for an error, the money that comes in plus the contract money
before the transaction should be equal to the money that comes
out plus the contract after the transaction. Using the Isabelle
theorem prover, the Marlowe system has been formally proven,
along with features such as money conservation. Sun et al.
[20] presented formal verification approaches for five types
of smart contract security issues in Ethereum, namely integer
overflow, the function specification issue, the invariant issue,
the authority control issue, and the behavior of the specific
function. They also verified the Binance Coin (BNB) contract.
They used the Coq proof assistant to verify and formalise their
proofs.

Using symbolic execution to verify and analyze smart
contracts. There are many efforts to analyze and expose
security vulnerabilities in smart contracts using symbolic exe-
cution. Tikhomirov et al. [21] introduced SmartCheck, a static
analysis tool that can be expanded and used to discover Solid-
ity contract vulnerabilities. SmartCheck takes Solidity source
code, turns it into an intermediate form based on Extensible
Markup Language, and compares this form to XPath patterns.
This tool can find certain security holes like the Denial of
Service (DoS). SmartCheck was written with Java. Beukema
[22] attempted to establish a formal Bitcoin specification.
Bitcoin’s interface functions and the expected outputs were
specified in his research. The majority of these functions

outline how the Bitcoin network protocol should work. He
used mCRL2, a programming language for specification. In his
contribution, he verified some properties like double-spending.

Using model checking to verify smart contracts. Gri-
shchenko et al. [23] presented a full small-step semantics of
EVM bytecode and formalised a substantial part of it in the F*.
This gave them executable code that they were able to check
against the official Ethereum test suite. Also, they formally
defined some critical security features for smart contracts. See
our article [1] for a review of several other article which use
model checking for verification of smart contracts.

III. INTRODUCTION TO THE PROOF ASSISTANT AGDA

Agda [11], is a dependently typed functional programming
language that expands the Martin-Löf constructive type theory
[24]. The most recent version of Agda is Agda 2, the version
designed and introduced by Ulf Norell in his doctoral thesis in
2007 [25], and then further developed by a collection of people
known as the Agda development team [11]. The Integrated
Development Environment (IDE) for editing Agda programs
is based on Emacs, mostly used for interactive editing and
verifying proofs [26]. Agda’s features include inductive and
inductive-recursive data types, coinduction, pattern matching
with dependent patterns, mixfix operators, copattern and a
module system [27]. Agda has complete support for Unicode
which supports mathematical and multifix symbols in order to
be able to write Agda code that is close to standard mathe-
matical notations. Moreover, identifiers, keywords, and a type-
directed development environment is provided through Agda
[28]. Agda has coverage and termination checkers [27], and
these concepts are required for Agda to be a consistent proof
assistant. In Agda, program code can be written gradually,
meaning some parts of the program can remain unfinished, and
programmers are able to get helpful information from Agda on
filling the parts of the code left open step by step, supported by
the type checking tool. The type checker is able to detect in-
correct proofs by detecting type errors. In addition, it displays
the current goals with type information and the environment
information associated with those goals. The coverage checker
of Agda checks that the initial code of a defined function
includes all possible existing cases in a particular program.
Agda has many type levels, the lowest one is called Set for
historical reasons. Record types serve as the newer approach
to define coinductive types. Agda defines inductive data types
as dependent versions of algebraic types using the keyword
“data” as common in functional programming, with strict
positivity of the constructors required. Agda is similar to Coq
[17], a language that extends the Calculus of Constructions,
but is impredicative, whereas Agda is predicative. Coq is
especially good for writing formal specifications and proofs.
However, there are some key distinctions between Agda and
Coq that might suggest the wider applicability of Agda. For
example, Agda supports inductive-recursive types, while Coq
does not [1]. Agda also has a more flexible pattern matching
system than Coq and supports copattern matching.
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As an example, we define the inductive type of Instruction-
All in Agda as follows:

data InstructionAll : Set where
opEqual opAdd opSub : InstructionAll
opVerify opCheckSig : InstructionAll

The definition above includes a new type called InstructionAll
with 16 constructors, opEqual, opAdd, opSub . . . of which
we only show the first 5. The elements of (InstructionAll) are
used in order to develop Bitcoin programs in Agda.

It is possible to write a function in Agda that returns a type:

BitcoinScript : Set
BitcoinScript = List InstructionAll

BitcoinScript defines the type of a Set as a list of instructions
of type InstructionAll.

IV. OPERATIONAL SEMANTICS FOR BITCOIN SCRIPT

In this section, we introduce Bitcoin script, and define its
operational semantics.

A. Bitcoin Script - the language of Bitcoin for Smart Contracts

The Bitcoin smart contract language SCRIPT is stack-based,
similar to Forth [5]. SCRIPT is not Turing-complete and execu-
tion of a Bitcoin scripts either fails or terminates. Bitcoin script
does not include loops, jumps or similar control structures
[29]. In Bitcoin 0 denotes false and nonzero values denote
true. Every transaction input and output in Bitcoin is associated
with a script. A transaction input is valid w.r.t. a corresponding
transaction output, if the execution of the output script starting
with an empty stack terminates, and then the execution of
the input script on the resulting stack terminates with a non-
empty stack having a non-zero top element. SCRIPT is a
sequence of instructions called Op_Codes which are encoded
as hexadecimal numbers.

In the previous paper [1], we introduced and explained the
meaning of selected non-conditional instructions. We illustrate
the execution of a non-conditional Bitcoin script by the follow-
ing simple example: <2> <3> OP_ADD <5> OP_EQUAL
The stack evolves as follows:

2
2

3
5

5

5

5

5 1
or

True

Initial
state

Push (2) Push (3) OP_
ADD

Push (5) OP_
EQUAL

Push the
result

Fig. 1. Simple example of local instructions

In this example we start with an empty stack. After pushing
2, 3 on the stack (instructions <2> <3>), OP_ADD adds
the two top elements together. After pushing 5 on the stack
OP_EQUAL checks whether the two top elements are equal,
and returns in this case 1 for true.

Control flow operations are executed as follows:
• If the value at the top of the stack is non-zero, after

an OP_IF the set of consecutive opcodes until the next
matching OP_ELSE or OP_ENDIF will be executed; in
case this is an OP_ELSE, all the following instructions
until the next matching OP_ENDIF will be ignored.

• In case the top element is 0, all instructions until the next
matching OP_ELSE or OP_ENDIF will be ignored; in
case this is an OP_ELSE, all the following instructions
until the next matching OP_ENDIF will be executed.

• In case of nested if then else, the complete conditional
from OP_IF to OP_ENDIF is either executed or ignored
depending on whether it occurred within an if-case or
else-case to be executed.

• OP_NOTIF behaves in the same as OP_IF but execut-
ing the if-case in case of top element 0 and the else-case
in case of top element not 0.

Consider the following example:
OP_IF <Alice’s PubKey> OP_CHECKSIG
OP_ELSE <Bob’s PubKey> OP_CHECKSIG OP_ENDIF
Assume the stack contains [ 1, sig ]. Then the if-case will be
executed, pushing Alice’s public key on the stack. The script
succeeds, if sig is a signature for the transaction using Alice’s
private key. If the stack contained [ 0, sig ], the same would
be done using Bob’s public key.

There are multiple standard scripts [30] used in Bitcoin,
for instance, the Pay-to-Public-Key-Hash (P2PKH) and Multi-
signature (P2MS) scripts.

B. Operational Semantics

This subsection defines the operational semantics of Bitcoin
SCRIPT in detail. The semantics is implemented in Agda. It
needs to be checked (validated) carefully to ensure that there
are no translation errors.

We include control flow statements of Bitcoin SCRIPT,
which allows to formalise more complex smart contracts,
but have non-local behavior. In our previous article [1], we
provided the operational semantics of local instructions, such
as OP_DUP, OP_ADD. We included as well instructions
with a more complex behavior, such as a multi-signature
instruction and a time delay instruction. We showed how to
derive and verify these scripts using weakest preconditions for
Hoare triples. All opcodes may fail if the stack has insufficient
elements to complete the operation. The operational semantics
in our previous article [1] was given w.r.t. a state, consisting
of a standard stack (Stack), which is given as a list of natural
numbers, a message (Msg) corresponding to the transaction
that has to be signed (we defined Msg as a data type in Agda),
and the current time as represented as an element of Time.
The resulting definition is

StackState := Time × Msg × Stack

Time is referred for instance by the instruction
OP_CHECKLOGTIMEVERIFY, and Msg is referred by
the instructions which check correctness of signatures.
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In order to deal with conditionals, we extend the state of the
previous article by adding an additional stack (IfStack) to deal
with possibly nested conditionals. Therefore the state which
allows to deal with control flow statements is as follows:

State := Time × Msg × Stack × IfStack

Here IfStack is a list of elements from the following list:
(ifCase, elseCase, ifSkip, elseSkip, ifIgnore).

• An empty IfStack means that we are currently not within
any conditional,

• a top element ifCase means that we are in the if-case of
a conditional to be executed,

• top element elseCase means that we are in the else-case
to be executed,

• ifSkip means that we are in the if-case of a conditional
not to be executed where the else-case is to be executed,

• elseSkip means that we are in the else-case of a condi-
tional not to be executed,

• ifIgnore means that we are in the if-case of a conditional,
where the whole conditional is to be ignored because it
is nested within an if or else-case of a conditional to be
ignored.

• There is no need for an elseIgnore, since we can reuse
elseSkip for it.

If the IfStack is created using the above semantics start-
ing with the empty stack, we see that ifCase, elseCase,
ifSkip can only occur above an empty ifstack, or ifs-
tack with top element in {ifCase,elseCase}, and ifIgnore
can only occur above an ifstack with top element in
{ifIgnore, ifSkip,elseSkip}. We add to the IfStack the con-
sistency condition that this condition is fulfilled. In the actual
Agda code we have instead of a consistent ifstack, two
components, an ifstack, and condition requiring the ifstack
to be consistent. The consistency condition avoids having to
prove, when verifying Bitcoin scripts, verification conditions
for ifstacks which never occur.

The type for all opcodes is given as an element of the
Agda data type InstructionAll. Accordingly, the operational
semantics of an instruction op : InstructionAll is represented
as

J op Ks : InstructionAll → State → Maybe State

We will give the definition of J op Ks for conditional
instructions. The definition of J opIf Ks is as follows:

• If the top element of IfStack is ifSkip, elseSkip, or
ifIgnore, then the conditional starting with the IF_CASE
needs to be ignored. This is achieved by pushing an
additional ifIgnore onto the IfStack.

• Otherwise, if the stack is empty, the execution will fail.
• Otherwise, the IfStack is empty, or the top element of it

is ifCase or elseCase. Then if the top element of the
stack is

– 0 then ifSkip will be pushed onto IfStack, since
the if-case is to be ignored and the else-case to be
executed,

– is not 0 then ifCase will be pushed on the IfStack,
since the if-case is to be executed.

Now we define J opElse Ks:
• If the IfStack is empty, then there is no OP_IF matching

the OP_ELSE, and therefore the execution fails.
• Otherwise, if the top element of IfStack is:

– elseSkip or elseCase then there was already an
OP_ELSE matching the previous OP_IF, and the
current OP_ELSE is unmatched, therefore execution
of the script fails;

– ifSkip then the top element will be replaced with
elseCase.

– ifCase or ifIgnore then the top element will be
replaced with elseSkip.

Finally, we define J opEndIf Ks:
• If the IfStack is empty then the OP_ENDIF is un-

matched, so the operation fails.
• Otherwise the OP_ENDIF terminates the current condi-

tional, and we pop the top element from the IfStack.
For all local instructions,

• if the IfStack is empty or its top element is ifCase or
elseCase then the instruction is executed (as defined in
our previous paper [1]) on all components excluding the
IfStack, while the IfStack remains unchanged;

• otherwise the State remains unchanged.

V. HOARE LOGIC

As explained in our previous paper [1], one can specify
the security of Bitcoin script by weakest preconditions, where
the post condition is the accept condition. Both pre- and post
conditions are predicates on State. Since scripts might fail,
the operational semantics of a program applied to a state
might fail, and is an element of a Maybe Type, which adds
an error element nothing to the elements of the underlying
type. We therefore lift the post condition ψ to a predicate ψ+

on Maybe State, where ψ+ is false for the error element
nothing, and otherwise returns ψ applied to the underlying
element of State.

Hoare triples consists of a precondition, a program, and a
postcondition. This triple asserts that if a precondition is met
before the execution of a program, then the postcondition will
be true after the program has been executed. Hoare triples can
be defined as follows:

< φ > p < ψ > := ∀s ∈ State.φ(s) → (ψ +) (J p K s)
As discussed in detail in [1] weakest precondition formal-

izes access control to the resource guarded by a Bitcoin script.
It expresses that the precondition is not only sufficient but
also necessary in order for the postcondition to hold once the
program has been executed. It can be defined as follows:

<φ>↔ p <ψ> := ∀s ∈ State.φ(s) ↔ (ψ +) (J p K s)
In order to unlock a locking script, it is necessary to provide

an unlocking script, which computes a state which fulfills the
weakest precondition for the locking script w.r.t. the accept
condition, therefore this weakest precondition specifies access
control for the unlocking script. A more detailed discussion of
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using weakest preconditions for access control can be found
in [1].

VI. VERIFICATION OF CONDITIONALS

In our previous paper [1] we developed techniques for
determining and, proving weakest preconditions for scripts
not involving conditionals. Conditionals, as discussed in this
paper, allow to define more complex scripts which allow the
unlocking of scripts depending on different scenarios. In order
to verify scripts using conditionals we develop ifthenelse-
theorems which form the weakest preconditions for the ifProg
and the elseProg of a conditional derive the weakest precon-
ditions for the conditional clause.

In our setting, when writing a script as
OP_IF ifProg OP_ELSE elseProg OP_ENDIF
we don’t require the OP_ELSE and OP_ENDIF to match
the OP_IF - there could be some other OP_ELSE or
OP_ENDIF occurring in ifProg or elseProg matching the
OP_IF. The script might still be correct because of the
occurrence of another OP_IF. The reason for not requiring
parsed programs is that it allows us to keep the data structure
for scripts as a simple list of instructions and mirrors as well
the real situation where there is no requirement that scripts
submitted to Bitcoin are parsed correctly. This is different
from normal program verification, where one has control over
programs and requires them to be parsed correctly. Instead
of requiring correctly parsed scripts we will add additional
conditions in the ifthenelse-theorem to make sure that if the
condition of the OP_IF is true, the elseProg has no effect, and
if it is false, the ifProg has no effect. This will be in addition to
the two expected conditions, one for the ifProg in case the top
element of the stack is true and one for the elseProg in case the
top element of the stack is false. The condition for elseProg
requires as well some extra cases: when working backwards
from the post condition to obtain the weakest precondition, we
need to deal with the situation that before the OP_ENDIF the
top element of the ifstack could have been any element except
(because of the consistency condition) ifIgnore. So we need
to have conditions for all these elements of elseProg even
though, while working further backwards we have reached
the OP_ELSE, it follows that the element must have been
elseCase or elseSkip.

We first define some notations used and then introduce the
main ifthenelse-theorem.

Definition 1:

(a) Let for a predicate ϕ on StackState the predicate lift(ϕ)
on IfStack be its lifting ignoring the ifstack component.

(b) Let ∧p and ∨p be the conjunction and disjunction of two
predicates on State.

(c) Let ϕ be a predicate on StackState. Then truePr(ϕ) is
the predicate on State expressing that the stack has top
element > 0 (i.e. not false), and ϕ holds for the remaining
stack, the message to be signed, and the time.
Let falsePr(ϕ) be the same predicate, but assuming the
top element is = 0 (i.e. false).

Theorem 2 (Main ifthenelse-theorem): Let ϕtrue, ϕfalse, ψ
be predicates on StackState and ifProg, elseProg two Bitcoin
scripts. Let i : IfStack, which is either empty or has top
element in s{ifCase,elseCase}.
Assume the following conditions:
(1) <lift(ϕtrue) ∧p ifStack =cons(ifCase, i)>↔

ifProg <lift(ψ) ∧p ifStack =cons(ifCase, i)>
(2) ifStack =lift(ϕfalse) ∧p ifStack =cons(ifSkip, i)

ifProg <lift(ϕfalse) ∧p ifStack =cons(ifSkip, i)>
(3) ∀x ∈ {ifCase,elseCase}.

<lift(ϕfalse) ∧p ifStack =cons(x, i)>↔

elseProg <lift(ψ) ∧p ifStack =cons(x, i)>
(4) ∀x ∈ {ifSkip,elseSkip}.

<lift(ψ) ∧p ifStack =cons(x, i)>↔

elseProg <lift(ψ) ∧p ifStack =cons(x, i)>
Then we get
<(truePr(ϕtrue) ∨p falsePr(ϕfalse)) ∧p ifStack =i>↔[

opIf
]

++ ifProg ++
[

opElse
]

++ elseProg ++
[

opEndIf
]

<lift(ψ) ∧p ifStack =i>
In order to prove the conditions (2) and (4) for scripts where

the ifProg or elseProg have no occurrence of conditional
instructions, we use the following theorem:

Theorem 3: Let ϕ be a predicate on StackState, x ∈
{ifSkip,elseSkip, ifIgnore, }, i : IfStack, and p be a Bitcoin
script not containg conditional instructions. Then we have
<lift(ϕ) ∧p ifStack =cons(x, i)>↔

p <lift(ϕ) ∧p ifStack =cons(x, i)>
Using these two theorems we can prove as an example the

weakest precondition for a simple conditional:
• Let P2PKHscript(pbkh) be the P2PKH Bitcoin script as

defined in [1] which checks that the stack has size at least
two, the top element of the stack is pkh hashing to pbkh
and the next element is a signature sig for the message
corresponding to pbk.

• Let P2PKHc(pbkh) be the weakest precondition for
P2PKHscript(pbkh), which expresses that the stack is
indeed as described before.

• Let accept be the accept condition on StackState, stating
that the stack has size at least 1, and top element which
is > 0 (i.e. not false).

• Let
P2PKHCondScr := OP_IF P2PKHscript(pbkh1)

OP_ELSE P2PKHscript(pbkh2)
OP_ENDIF

be a conditional P2PKH script, which operates like a
P2PKH script but allowing two different public key
hashes pbkh1 and pbkh2 and requiring an extra element
on the stack which considered as a Boolean decides
which of the two public key hashes is to be used.

The theorem expresses that the weakest precondition for the
accept condition for p is that the top element of the stack is
> 0 and the remaining stack fulfills the weakest precondition
for P2PKH w.r.t. pbkh1 or the top element is 0 and we have the
weakest precondition for P2PKH w.r.t. pbkh2, and the ifstack
is empty:
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Theorem 4:
<(truePr(P2PKHc(pbkh1)) ∨p falsePr(P2PKHc(pbkh2)))

∧p ifStack =[ ]>↔

P2PKHCondScr <lift(accept) ∧p ifStack =[ ]>
The proof is by Theorem 2, where the proof conditions (1)

and (3) follow by the verification conditions for the P2PKH
script lifted to having an ifstack, and conditions (2) and (4)
follow by Theorem 3.

VII. CONCLUSION AND FUTURE WORK

In this paper, we used the Agda proof assistant in order
to verify Bitcoin scripts. The paper deals with non-local
instructions such as OP_IF, OP_ELSE, and OP_ENDIF. We
formalise these non-local instructions’ operational semantics
to re-create the process of smart contract validation. We
extended the state from our previous article [1] by adding
an additional ifstack, and defined the operational semantics of
conditionals. We developed an ifthenelse-theorem and used it
to verify an example script.

In future work, we will apply those non-local instructions
to more complex scripts such as the Pay-to-Public-Key-Hash
(P2PKH) and Pay to Multisig (P2MS) scripts. In [1] we
demonstrated two approaches for obtaining weakest precon-
ditions for scripts not containing conditionals: (1) a step-by-
step method going backwards through a script, instruction by
instruction, possibly combining some of them into one step,
or (2) a symbolic execution of the code translated into a
nested case distinction. Using the ifthenelse-theorem of this
paper, we can then derive from weakest preconditions for each
of the pathways (obtained by these 2 techniques) a weakest
precondition for the full script.

REFERENCES

[1] F. F. Alhabardi, A. Beckmann, B. Lazar, and A. Setzer, “Verification
of Bitcoin Script in Agda Using Weakest Preconditions for Access
Control,” in 27th International Conference on Types for Proofs and
Programs (TYPES 2021), ser. LIPIcs, vol. 239. Dagstuhl, Germany:
Leibniz-Zentrum für Informatik, 2022, pp. 1:1–1:25, doi: https://doi.org/
10.4230/LIPIcs.TYPES.2021.1.

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008,
Availabe from https://www.debr.io/article/21260.pdf.
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