A Type Theory for Iterated Inductive Definitions

Anton Setzer
Department of Pure Mathematics, University of Leeds
Leeds LS2 9JT
email pmt6ans@leeds.ac.uk

9/iii /1994

Abstract

We introduce a type theory F'A,,, which has at least the strength of finitely iterated
inductive definitions ID.,. This type theory has as ground types trees with finitely
many branching degrees (so called free algebras). We introduce an equality in this theory,
without the need for undecidable prime formulas. Then we give a direct well-ordering proof
for this theory by representing a ordinal denotation system in the iteration of Kleene’s O.
This can be easily done, by introducing functions on the trees, which correspond to the
functions in the ordinal denotation system. The proof shows, that F'A,, proofs transfinite
induction up to DgD,,0, which shows, that the strength of F'A,, is at least I D,. It seems
to be obvious, that this bound is sharp.

1 Definition of the type theory FA,
Definition 1.1 The type theory F'A,, is defined as follows:

(a) The ground types are defined inductively by:
Ifn>0 and oy, . .., are ground types, then (o, ..., a,) is a ground type.
The type (o, ...,qn,) should be the type of well-founded trees with branching degrees
Ap,y...,0,.
(b) Ground types are types, and if o, 5 are types then (o — [3) is a type.
We will omit brackets, using the usual conventions.
(c) If a = (a,...,ay) is a ground type, then for i = 1,....,n C{ is a constant of type

(o =) — a (C8 are the constructors for this type) and if v is as before and o a type,
then we have the recursion constant R, , of type

(1 —a) = (v —0)=0) == ((an—=a) = (n—0)—0)—a—0o

We will write (Cy : aq,...,Cy : ay) for (aq,...,an) to indicate, that C; are names for

Ccy.

7

(d)

(¢)

(f)

(9)

(h)

(i)

The terms are the typed lambda terms, built using the constants of (¢). We write t° for a
term t of type o.

Special groundtypes are the empty type O := () with no constructors and ex falsum quodlibet
EFQ, = Ry, of type 0 — o, (we will omit the index o, if it is clear from the context)
the type of booleans bool = 2 := (0,0) with special terms true = CY'"EFQuu and
false == C5' EF Qo0 of type bool.

We have as reduction rules o, 3 and n-reduction and the rules for the recursion-constants
(= (a1,...,00)) Raogsi-$n(Cif) —rea Sif(AT.RosS1---Su(fx)), where x is a new
variable, which will be applied to subterms as well.

We will identify terms, that are equivalent using these reduction-rules and write s ~t, if
we identify two terms. Therefore ~ is the transitive, reflexive and symmetric closure of
the reduction-relation — 4.

Note, that [Ber94] proofs strong normalization for an extension of this type theory.

The formulas are atom(t*°°!) where t is a term of type bool and if ¢, are formulas, x a
variable of type o, then ¢ — 1, ¢ ANy and Vx?.¢ are formulas.

We define L:= atom(false), ~¢ := ¢ — L.

We have the rules of intuitionistic logic. The axioms are atom(true) and induction over
ground types: If a = (a1, ..., ay) is a ground type, ¢(z) a formula, then we have the aziom

(V=2 (Va1 §(fz)) — G(CLf)) — -+ — (Vo (V2o g(fz)) — (Cof)) — V2B (z).

Definition 1.2 Further we have the following special types:

(a)

(b)

(c)

(d)

The types with n elements n:= (C} :0,...,CL | :0).
ky, = CPEFQ,.

For the booleans we define ifthenelse,: B — o — o — o, written if, r then s else t
for ifthenelse, rst, (we omit the o usually) ifthenelse,:= \x,y, 2. Ry (Au, v.y)(Au, v.2)z,
therefore if tt else s then t —,.cq8, if ff else s then t —,.qt. This allows us to define a
function on the booleans by case distinction on, wether a term is true or false.

A boolean predicate P(x{*, ..., z%) is a formula atom(fxy---x,) where f 1oy — -+ —
a, — bool. In this case (P(t1,...,tn))boot := ft1 -+ tn. We will usually not mention f in
the definition of boolean predicates. Therefore, if we say: “we define a prediacte P(x®)
by induction on x*”, and define further “P(C%q) iff Q(g) for some boolean property Q”,
we mean, the following: we define a function f : a — bool by induction on «, such that
f(C%g) == (Q(9))boot, and define P(t) := atom(ft).

Note, that negation, disjunction and conjunction of boolean predicates is a boolean pred-
icate, since we have boolean functions —g : bool — bool, Vg : bool — bool — bool,
Ag : bool — bool — bool.

o
n

w:=(C¥ :0,C¢1). We have the zero of type w 0, := CYEFQ, an the successor function
succ, = \r.CY (Ay.x), of type w — w.

We intruduce some basic predicates and functions:
Definition 1.3 Let a = (C} : ay, ..., Chay).

(a) We define the boolean predicate 1,(t) = «; by recursion on t : «. (More precisely, if
several of the types are identical, we have to use a name a; for each type «;, such that
for i # j a; # a;, and have to write 7,(t) = a5, but want to keep the notation simple):

To(Cif) = o is true, and 7,(C; f) = o is false, if j # 1.
We will usually omit the index o and write 7(t) # a; for =(7(t) = o).

(b) We define -[-|5 : o — a; by recusion on a, (Cif)[s]a, := fs, (C;f)[sla, .= C;f, if j # 1.

If we have T(a) = a;, than by a[s] stands for a[s]3, .par

(c) We define predy, : o — (a; — «) by recursion, predg (Cif) = f, predg (C;f) =
N (Cif), if j # i

We have to distinguish between empty and non empty types, in order to define dummy

elements of non empty types. The empty types are those, which are built of non empty
types.

Definition 1.4 (a) We define the Meta-predicate “o is empty” for ground-types o by induc-
tion on the definition of a:

If o = (e, ...,), then a is empty iff all ; are not empty.

(b) We define for empty ground types a and arbitrary type v the function EFQ% : o — o, and

for not empty ground types a an element dummy,, : «, simultaneously by Meta-induction
on the types:

Ifa=(C}: aq,...,Chay) is not empty, i minimal such that o is empty then dummy, =
C;EFQ%«, and if o is empty, we define by recursion EFQ%t fort : a: EFQ%Y(C;f) =
EFQY(f dummy,,), which is possible, since a; is not empty. The last arguments allows
as well to prove Yx*. L, by replacing the recursion by induction.

Definition 1.5 We will introduce lists as functions w — a. Assume « is a ground-type.
(a) list(a) == w — a.
(b) nil, == Az.dummy,, defined only, if o is not empty.
(c) cary := Ax.(z0,) of type list(a) — «.
(d) cdry, = Az y.x(succ y) of type list(a) — list(a).

(e) We define cons, : a — list(a) — list(a), cons xyn is defined by induction on n : w:
cons xy0 := x, cons zy(succ t) := yt.

(f) (').@ : ZZSt(O_/) - w — o, (f)i@ = fZ

Remark 1.6 car(cons s*t"4®)) ~ s, cdr(cons s“t1t(®) ~ ¢

Proof: car(cons st) ~ (cons st)0 ~ s, cdr(cons st) ~ Ax.(cons st)(succ x) ~ \v.tx ~ t.

2 Definition of the equality

The idea for the well-ordering proof is, to reduce it to the well-ordering on our trees. We
want to show

(Vo € OT,,.(Vy < 7(x).y € OT,, — ¢(x[y])) — ¢(x)) — Vo € OT,,.¢(x).

by defining
w(xﬂnﬂ) =Vy € OTn.LOTmy =T — ¢(x)

and using now transfinite induction over the type §,.; (which is the nth iteration of
Kleene’s O).

But in order to do this, we need an equality in our system. But we do not want any
undecidable prime formulas in our theory (see [Sch92] for some discussion about it),
therefore we have to work hard to do this.

An element of a ground type « is a tree, which has, if « = («, ..., a,), branching degrees
a1, ...,a,. Now the idea is, that two terms are equal, if, whenever we go by a path
in both trees to subtree, we have nodes, which are locally equal: they have the same
constructor. Therefore we need to define the paths, which may consist of elements of
the branching degrees. We will define a concept s[I¥*"® . 1#51®). @] the intended
meaning being, that we go m times to the predecessor, starting at s, selecting the branch,
which corresponds to the first element of the list of type list(«;), if we have branching
degree «;. If the type ay is empty, we will stop with this process. Further we introduce
local equality =!¢

a

Definition 2.1 Assume o = (Cy : aq,...,Cy 2 ay). W.lo.g. ay,...,ap are not empty,
Qkt1,---,0n are empty.
(a) We define -[-,...,]a : a — list(ag) — -+ — list(ag) — w — «a. We define
ally, ..., l;m] by recursion on m, side-recursion on a:

a[l177lk706Jf] =a,
if i < k we define

(Cillys - s CY f] = (f car(l)[lys - - limy edr(l), liga, - -+ Dk, fO4]

and if k < i we have
(CiHlls - U CF f] = Cif,

We will write a[E m] for ally, ..., lx;m], and V") for vxlf'“(“l), ..., abistlon)

r'n

(b) We define the boolean predicate s* ='¢ t* by recursion on s and side-recursion on t:
Cif =i, Chg iff i = j.

The definition of the equality will be a little bit more complicated, than it seems at first
sight. We will not be able to prove Vf*5.a% =, y* — (fz) =5 (fy). All terms, we can
construct, will fulfill this condition. We will call functions respectful, if they have this
condition. Now this implies, that we need some notion of respectfulness on ground terms
as well: We want, that in each occurrence of C;f, we have f is respectful. Now we want

4

only to check equality, using respectful lists. Therefore we have to define simultaneously
for all ground types « the predicate Resp, (t*) for t is respectful, and the equality s* =, t*
for s and t are equal elements of type «.

Definition 2.2 We define simultaneously for all ground types the predicate Respq(t*),
the predicate s =, t* and Resplist, (1" (an auziliary definition for | is a respectful
list) and Locresp,(t*) (fort is locally respectful).

Assume o = (C1 : aq,y ..., Cp), w.lo.g. aq,...,ar not empty, agiq, ..., 0, empty.
We write Resplist,(Z) for Resplisty, (x1) A - A Resplisty, (xy).

(a) s% =4 1% is defined as V&'"*!®) m® Resplisto(T) — s[T;m] =¢ t[Z; m].par
(b) Locrespa(t) :== Nizi,..,
(c) Respy(t) := V24 m«(Resplist,(Z) — Locrespa(t[z;m]).
(d) Resplisty(l) :=¥n<.Respa((1)n)).

n(T(1) = @i = V™, y* Respa, (1) = & =a; y — U[z] =a tly]).

We will now characterize the equality:

Lemma 2.3 Assume « is a ground type.
(a) Yz, 4") Resp(x) — Resplist(y) — Resplist(cons xy)).
(b) Vals4) Resplist(x) — (Resp(car x) A Resplist(cdr x)).

Proof: trivial.

Lemma 2.4 (a) =, and =% are equivalence relations (for ground-types o).

(b) If a is not empty, then Resp(dummy,), and Resplist(nil,).

Proof:(a): For =l this follows by induction on the type «, for =, by Meta-induction on
the definition of the ground-types.

(b): We have Locresp,(dummy,), since 7(dummy,) # a; for not empty types «;.

Now follows by induction on n*, Locresp(dummy|z;n]): In both cases ¢ = 0,1 we have
dummy[Z; C; f] ~ dummy, therefore Locresp(dummy|Z; C; f].

Resplist(nil,) follows now directly.

We charactrize equality and Resp(t) as follows:

Lemma 2.5 Assume o = (C} : ay,...,Cp t o), f,9 1, — o, h:a; — a, rs: a.
W.l.o.g. ay,...,ar are not empty, gy, ..., q, are empty.

(a) ~(Cif =a Cjh), if i # j.

(b) Cif = Cig <> V2% Resp(z) — fz = ga.

(c) Locrespa(Cif) < allz®,y® Resp(z) — = =y — [z =a fy.
(d) Respa(Cif) < (Locrespa(Cif) AV Resp(x) — Resp(fa)).
(e) If a; is empty, then Cif =o Cig, Locresp(Cif), Resp(Cif).

(f) s =at — ((Locresp(s) < Locresp(t)) A (Resp(s) < Resp(t))).

Proof:

Let nil := nilg,, . . ., nil,,. Then we have Resplist(nzl)

(a): If C;f =4 C,g, then, C;flnil; 0] =l¢ C;g[nil; 0], C;f[nil; 0] ~ Cif, Cig[nil; 0] ~ Cig,
therefore ¢ = j

(b) Case «; is not empty:

Assume C;f = C;g and z*, Resp(x), and Jlist(@) e, Resplist(l_j.

Then Resplist(cons xl;), therefore

(f2)[l:m] ~ (f(car (cons xl)))[l1, ..., cdr (cons xl;),. .. 1 m]
~ (Cif)lh...,cons xl;, ...l succ m]
=loc (Cig)[ly - .., cons xl;, . .., I; succ m)]
~ (ga)[l; m],

therefore fr =, gx. B

If we have the r.h.s. I%54®) Resplist(l), then we have:

It m = Cog, (Cif)[lh...lyym| =~ Cif = loc Cig ~ (Cig)lly ... ly; m].
If m = Cyg, Resp(car l;), Resplzst(cdr l;), therefore

(CiHl - l;m] = (f(car U)[l, ... edr b, ... 1k g0]

=loc (g(car)|, ...,cdr i, ... 1l g0]

~ (Cig)[l - - . l;m]
Case «; is empty: Assume C;f = Cig [list(e) , m~ Resplist(f) Then we have, in both cases
r=20,1and m = C.g, (C;f)[l1...lx;m] ~ C’f =loc Cig ~ (Cig)[ly .. . l1;;m]. Therefore
Cif =a Cig, and Vz¢. L, therefore the r.h.s. as Well
(c): Follows, in case «; is not empty, since (C;f)[z] ~ fx by definition.
If ov; is empty, then we have Locresp(C; f), and the r.h.s. follows from ex falsum quodlibet.
(d): Follows as (a), (b).
(e): Follows from the proofs above.
(f): Follows from (a), (b), (¢), (d) by induction on s and ¢.

We can then define the equality on arbitrary types as follows:
Definition 2.6 We define =, and Resp,, for all types by induction on the definition. For
ground types we have already defined it. Let o = 3 — 7.

(CL) fa ~a ga Zﬁ[Vxﬁ, Resp@(a:) — fx =, gT.
(b) Respa(fa) g‘ﬁvxﬁyﬁ,Respﬁ() — X =3y — (f.CE =, fy/\ ReSpV(fa:)
We have now:

Lemma 2.7 (a) =, is an equivalence relation on types.

(b) 5 =a t — (Resp(s) < Resp(t))).

(c) For every constructor C' and every recursion constant R we have Resp(C'), Resp(R) and
if s%7B, t* are terms, then Resp(s) — Resp(t) — Resp(st).

6

(d) For every term t with free varibles among x7*, ..., %" we have

ren

Vi, ..., xp, 2, ..., 2, Resp(x1) — -+ — Resp(x,) = o1 =2 — -+ — x, =1, —

Resp(t) ANt(z1,...,x,) =t(2], ..., xn).
Proof:
(a): Easy.
(b): Follows by Meta-induction on the definition of types.
(c): fC: (B — a)— a,and f,g: 8 — «, Resp(f), f =a g, then Vz.Resp(x) — fx = gz,
therefore C'f = C'g, and we have Resp(C'f).
If R=Ryo, a=(Cy:ay,...,Ch: ap), and we have s;, s, : (o = a) — (o — 0) —
o), Resp(s;), si = s,, we have to show Vz* 2'*.Resp(x) — =z = 2’ — (Rsy-- s,z =
Rsy -+ s,2" A Resp(Rsy -+ - sp,x)). We show this by induction on z, 2. Assume z = C;f,
o' =C;f'. Ifi# j,then x # 2/, and if i = j, then by Resp(x) and x = 2’ follows Resp(f),
Resp(x'), Resp(f’), and by IH (since

Yy, Y Resp(y) — y =y — (Resp(fy) A fy = fy' A fy= fy)

for all y*i, ' with Resp(y), y = v', we have Resp(Rs1 - $,(fy)),
Rsy - Sn(fy> = Rsy-+- Sn(fy/)>

Rsy -- Sn(fy) = Rsll o 'sln(f/y)v
therefore Resp(Ay.Rsi---s,(fy)),

Ny.Rsy---sn(fy) = Ay.Rs| -~ s, (f'y).

Now follows Resp(s;f(Ay.Rs1---s.(fy))), and

sif(A\y.Rs1 -+ sn(fy)) = sif (N\y.Rs) -5, (f'y) = sif' (Ay.Rsy - 5,,(f'y)).

since
Rs1, ..., 8.(Cif) = sif(My.Rsy -+ - s,(fy))
Rs,l? cee Sé(clf,) = S;f,(Ay'Rsll t Sé(f,y))
follows the assertion.

Resp(st) is trivial.
(d) Follows immediately from (c) by induction on the defintion of terms.

Notation 2.8 We write Vx7; ¢ for V. Resp(x) — ¢”. If we write “assume Resp(x?)”
we mean, “assume 7, assume Resp(x)” and if we write “for all respectful x°” we mean
“for all % such that Resp(x)”.

Definition 2.9 (a) We define flat : w — w by recursion on w:
flat(Cof) := zero, flat(Cyf) := succ(flat(f0)).
(b) We define the boolean predicate eqnat(z%,y<) by recursion on w:

eqnat(Co f, Cog) is true, eqnat(Cy f, C1g) is false, eqnat(Cy f,C1g) iff eqnat(f0, g0).
Lemma 2.10 V2%, y2. Resp(flat(x)) A (eqnat(x,y) — flat(x) = flat(y)).

7

Proof by induction on w, using, that Resp(0), Resp(succ) (since both are terms), there-
fore x = y — succ(x) = succ(y), Resp(x) — Resp(succ).
Definition 2.11 We interpret n ary primitive recursive functions in FA, as functions

w — - — w as follows: the function with constant value n is interpreted as succ?, the
—_

ntimes
identity as A\x.x, the composition of f with n-ary functions g; as

AE1y o T f g1y) e (G T,
and the primitive recursive function fOZ := g, f(sucen)Z = hn(fnZ)Z as

R, (Au,v.9)(Au, v.h(u0)(v0)).

Lemma 2.12 If f is a n-ary primitive recursive function, then

Vo, ... xp flat(foy - x,) = f(flat z1) - (flat)
Proof: Induction on the definition of the primitive recursive functions.

3 The ordinal denotation system OT

We introduce a primitive recursive denotation system, omitting the proofs (see [Buc86],
[BS88] for proofs and details, for this particular system it is worked out in [Set90]).

Definition 3.1 Let Oor, Do, D1, ... be a sequence of formal symbols (We will write O for
OOT)-

Then for n € w the set T, of terms is defined by

0€T, is a term,

ifa€T,, k<mn, then Dya € T,,

and if k > 1, ag,...,ax € T, then (aq,...,a;) € T,.

We assume some coding of T := U,e,, T, in w, s.t. we have some boolean predicate s € T,
(depending on s and n%), and a function length : w — w for the length of the term.
The terms Dya are called principal terms.

If a is a principal term, then (a) := a.

Qpi1:=D,0,1:= Dy0, w:= Dyl.

We will write Vo € T.¢(z) for Va2.x € T — ¢(z), where x € T is the boolean predicate
correponding to 7', similar for other sets, which are introduced as boolean predicates.
Definition 3.2 We define a < b for a,b €T by

a<bifb#0,

Dya < Dybifu<wvor (u=vanda <b)

and if n > 1 orm > 1, then for a = (ag,...,a,),b= (by,...bn),

a<bs (n<mAVi<n.a;=0b)V Ik <min{n,m}.ap < b AVi <n.a; =0;.

Leta =b:— (a<bVa=0b).

=<, = can be defined as boolean predicates on w X w.

We define for a € T and M, M' C T

MM Ve M3ye M(z=<y),

M <a:&VreM=<a),

a=xM:&3dre Ma=u1).

Definition 3.3 We define G,a C T fora €T by
G,0:=0,

Gulag, ... ar) = GuagU---UGuag (ifk>1),

G, Db := { {b} UG, if u <w,

@7 Zf'U < u.
Definition 3.4 We define the set of terms OT(OT C T): by
0€ 0T,

if ag,...,a € OT (k>1), ax = -+ = ag, then (ag,...,a;) € OT
and if b € OT, G,b < b, then D,b € OT.
oT,, =0T nNT,.
In the following Vx < t.¢(x) :=Va € OT.x <t — ¢(x), similar for <.
Further for a € OT a considered as a set will be the set {x € OT|x < a}.
Definition 3.5 Definition of a + b for a,b € T':
a+0:=0+a:= a, (ao,...,ak)+(b0,...,bm) = (ao,...,a,k,bo,...,bm) (if(ao,...
and (bo, ..., by) #0).
Definition of a-n forae T, ne OT, n < w:
a-0:=0,a-(n+1):=a-n+a.
Definition 3.6 (Definition of 7(a) and alz] for a € OT, z € 7(a)).
(1].0) 7(0):=0.
(1].1) (1) :=1. 1[0] :== 0.
(112) 7(Dus10) := Qui1. (Dyi10)[2] = 2.
(113) Assume a = D,b s.t. b+ 0:
(i) Ifr(b) =1: 7(a) = w,
a[n] == (D,b[0]) - (n+1).
(i) If7(b) = Qui1 (v<u<w): 7(a) :==w, aln] :== D,b[(,],
wobei (o := D,0, (ur1 = Dyb[(].
(iii) T(b) € {w} U{Qus1 | u <v}: 7(a):=7(b),

alz] == D,b|z].
(115) a=(ag,...,ax)(k>1): 7(a) := 7(ax),
alz] == (ag, ..., ak_1) + az].

Wir define 0[n] := 0, a[n] := a[0] for a € T with 7(a) = 1.
Lemma 3.7 (a) < is a linear ordering on OT.

(b) {x € OT|z < w} is the least set X such that 0 € X and ifxr € X, v+ 1€ X.
(c) Ya € OT Nz < 7(a).a[z] € OT A a[z] < a.

(d) Ya € OTNb e OTb < a— Jx € OT.b < a[z].

(e) YVa € OT.a <w — (a=0V Jz € OT.length(z) <aNa=uz+1).

(f) Ya € OT.a < DyD,, 110 — a € OT,.
Proof: Is done in the cited literature.

4 The nth numberclasses in the type theory A

We introduce now the iteration of Kleene’s O.

Definition 4.1 (a) We define the n-th numberclass ,, (R, = O,,, where O,, is the iteration
of Kleene’s O) by Meta-recursion onn forn >1: Q, = (C’é)" : 0, C’?" 01, C'g" S W, C’gf :
Q.. .,C’g:fl c Q1)

We define Og, == CS"EFQ, succq, : \x.CS" (Au.x) of type O, — Q.
(b) The branch ordinals are the ordinals 0,1,w, 2y, Qs, Qg

The ordinal types are o for a a branch ordinal.
(c) We define for a, 3 branch ordinals aCyypef3 = o < 3, and aCyypel 1 a 2 5.
(d) For an letter 1 = 0,1,w,, ..., T is the corresponding type 0,1, w, Q.

(e) If o < 1, then we define the embedding t,, : ¢ — T, by recursion on g: For a < o,

Lo (Cof) :=CI Azt - (f).

Further the projection is defined, proj,, : T — a, (6 < 1) by recursion on 7: For a < o,
projro(CLf) == CIAz.proj, . (fx).

and if o R a < 7, then proj, ,(CLf) = 0,.
Lemma 4.2 Assume a = (3 =<~ are branch ordinals.
(a) V2% projs.ate st = T.
(b) V2% 15 L0 T = Lo
(¢c) VzL; projg oprojy pgr = projyqx.

Proof:
(a): Induction on 2. If f : ¢ — «, and by IH Vy%; proj(c(fy)) = fy, then proj(c(CSf)) ~
CaAy-proj(i(fy)) = CoXNy.fy = Cf.

5 Representation of O7' in (),

Definition 5.1 We define the functions, representing the usual ordinal functions on OT
as follows

(a) We define addition +, : ¢ — o — ¢ for an ordinaltype o by recursion on the second
argument:

s+ Cof =5, s+ C1f :=succ (s+ f(01)), s+ Cof := Colx.(s +).

(b) We define multiplication -, : 0 — w — g for an ordinaltype o by recursion on the second
argument:

s-Cof =0,s+C1f:=(s-(f01)) +s.
(c) QF =17 ;= succ 0, (if o #0,1).

10

(d) For Qy = o, we define w’ := CyA\z.1 - (succ x).

(e) For Qy < o, we define Qf := C§ A\x.10, o7

(f) We define for natural numbers n > 1, Dy, : Q, — (n — Q). (Dypxk is the representation
of the collapsing function Dk in n (which we will call Dy™. This is a way, to define

simultaneously the functions D™, ..., DS).
We define D,, by recursion on £):
Dy (Cof)k == Qpq,.
Do (CLf)k = Codz. (D, (fO)K) - .
If Qp < Q1 = a, then
Du(Caf)k = Codw.Du(f(pr0jon 1 0Csuce 2)F,

where €. : w — Q,, 1 is defined by recursion on w,
Coor =Sy Covp = Dn(f(proja, o,.,Cro.))-

If1 < a <X Qy, then En(C'af)k = C’a)\x.ﬁn(fx)k,
(9) DI = \z.Dyx(k+1), D : Q, — Q,,.

(h) We define for branch ordinals o < Q41 the interpretation of OT, Na in Qi Lor,, :
w—a (' = torn): V(0):= 04, '(Dra) := D" torna, V(ag, ..., a,) = t'(ag) +- -1 (a,).

To avoit problems with equality, we define:

L= Ax. (flat(x)).
Lemma 5.2 (a) Va“.Resp((z)).

(b) Vi, y.eqnat(z, y) — () = i(y).
Lemma 5.3 If a, 3 are branch ordinals, « =< 3, 1 := Lo 3, Proj := projg., then

(a) Vo, y& 1z +y) = () + 1(y).

(b) Vo2, y%u(x - y) = o(z) - y.

(¢) For x branch ordinal or x = Qg s.t. x < a. we have 1(x,) = xg, proj(xs) = T4,
(d) If o« = Qn, B = Q. then Va2, o(Dyxk) = Dpt(x)k, Y22 oDy gt) = Dy ().

The proof follows immediately by induction on the definition of the respective functions
(using naturally the implicit predicates Resp.

Definition 5.4 We define for a < 3 branch ordinals t2 <5 o for 1o 5(projsat) = t.
The meaning 1is, that t is the embedding of term of type 3 in a.

Remark 5.5 If a =< 3 are branch ordinals, v < 3, then

(a) Ifa =y, =(CYf <3 a).

11

(b) If v < «, then C’gf =g o= V2l fo <5 a.
(c) Ifa X B <7, thenVal;x < a — x < [.

Proof:

(a) Laﬁprojaﬁaé f= C’g g for some ¢, therefore not equal to C’g f.

(b) tproj(C,f) = Cydx.w(proj(fx)) = C, f, it VaZ; u(proj(fz) = fx. (Note, that we have
implicitly always the respectfulness predicate.

(c) follows by induction on v, using (a) and (b).

Lemma 5.6 Assume a < (3 branch ordinals.
(a) Va2 ylix <ga —y <ga —x+y <5 a.
(b) Vol y o <50 —— -y <5 .
(c) If t =0,1,w,Q0,Q, ..., then x5 < a iff v < «a.
(d) If B = Quy1, a < B, then Va®; D x <5 Qppr.
(e) D§"0 <5 w.
(f) If a € OT,, a < B 2 v < Quy1, then torn(z) < 5.

Proof: (a) - (e) follow by induction on the types.
(f) follows by (a) - (e) by induction on the length of a.

Lemma 5.7 Let a be a branch ordinal.
(a) T(0,) =0AV2L L. (@#0)
(b) T(la) = LAVzh1a[a] =0 (a #0,1).
(¢) T(Quira) = Quyy AVaur1; Q2 [2] = Lo, T (Qu1 <).
(d) Vanir;7(z) = 0 — 7(Dtyx) = Qiy Ay (DY112)[y] = Lo, 0y
(e) Va1, 7(2%+1) = 1 — 7(DSx) = w A Va2 (D) [n] = (DS (2[0])) - suce n.
(f) If v <wu <n, then with ¢ , @ :w — Q, 4, s.t.
Craw®(Cof) = D0, G o(CLf) o= Dy (2[proje, s 0. (Gt (F0))),

we have
Vant: T(r) = Qyuiy — T(D?"Qf) = wA

vy (D, 2)[y] = Dy (2[proje, 1 2. (Crupa(suce y))]).

(9) If B=w or =1, u<wv, then

Vale; 7(z) = § — 7(DSx) = B A VY2 (DS x)ly] = DI (x[y))

12

(h) If B # 0, then
Vo Y% 7(2) = B — Ty +2) = BAVE (y +2)[2] =y + (al2])

Proof: Either immediate, oder transfinite induction on the type of x (where we actually
do not need really induction, but just that we have we have x = C'f for some constructor.

Lemma 5.8 (a) Vo € OT,.corn(z) = torna(flat(z)).
Vo,y € OT,.eqnat(z,y) — torn(x) = torn(y)-
(b) Yy € OT,,.Lorn(y + 1) = succ tor,(y).
(c) Vz,y € OT.corn(x +y) = (torn®) + (torny)-

(d) Vx,y € OT,.y < w — (torn?) - (torny) = torn(T - Y).
Proof: Induction on the length of y.
Lemma 5.9 If a =, 4, then

Vo € OT,.m(tornz) =z AVy € OT, N 7(x).Lorn(z[y]) = (torn)[Projo,. . @) torny]-
(Where this stands more precisely for the formula:

Vo € OT,. A T(x) =a = T(tornr) =aAVy € OT,.y < a —
{ala<Q, 1 abranch ordinaly

LOT,n(I [y]) = (LOT,n) [PT OJ'QnH,aLOT,n?/]-

Proof: Induction on the definition of OT,, using eqnat(flat(x[y]), flat(x)[flat(y)]), (by
-[-] is primitive recursive and 2.12), Lemmata 5.6, 5.7, 5.8. In the case z = D,b, 7(b) =
.11, we prove by induction on the length of y

Vy € OT-LOT,nCy = C;L,U,”U(LOTynb) (pTOan+1,wLOT,ny)7

using 3.7 (e).

6 Proof of transfinite induction
Lemma 6.1 If ¢(2¥2) is a formula, then
(Vo € OT,,.(Vy < 7(x).y € OT,, — ¢(x[y])) — ¢(x)) — Vo € OT,,.¢(x).

Proof:

Assume Vo € OT,,.(Vy < 7(x).y € OT,, — ¢(z[y])) — o(z).

Let ¢(22+1) := Vy € OTyn.torny = * — ¢(z). Then, we have for all branch ordinals
a < Q4 respectful fE78n (V220)(f2)) — Y(Cof):

Assume Vz2590(fz). If torn(y) = Cof, then 7(y) = « and for z € OT,, z < a,
LOT,n(y[ZD - (Caf)[pr0j9n+1,g(LOT,nZ)] = f(pTOanJrhg(LOT,nz))? by IH therefore ¢<y[2])
and therefore by assumption ¢(y) and we get ¢(C,f). By transfinite induction on €2,
follows therefore Van+1:9)(z), therefore Vy € OT,,.¢(x).

13

Theorem 6.2 If ¢(z%) is a formula (where after every quantifier we have the predicate

Resp(z)),

then

(Ve € OT N (Vy < 7(x).0(y)) — ¢(z)) — Yo < D0D,,0.¢(z).

Proof: Let ¢(x) := z < DyD,0 — Yy < z.¢(x). Then Vz € OT,,.(Vy < 7(z).y € OT,, —
o(z[y])) — ¢(x): 7(x) =0, 1,w therefore OT,,N7(x) = 7(z). From Vy € OT,N7(z).¢(z[y])
follows therefore using 3.7 (d) Yy < 7(x).¢(y) and therefore ¢(z).

By 6.1 follows Vo € OT,,.1)(x), therefore Va € OT,.¢)(x + 1) and we are done.

References

[Ber94]

[BFPS81]

[BSSS)

[Buc86]

[Sch92]

[Set90]

[Set93]

U. Berger. Strong normalization for the typed lambda-calculus with recursion over
wellfounded trees. abstract, submitted to PPC’94, 1994.

W. Buchholz, S. Feferman, W. Pohlers, and W. Sieg. Iterated Inductive Definitions.
Recent Prooftheoretical Studies, volume 897 of Springer Lecture Notes in Mathemat-
ics. Springer, Berlin, Heidelberg, New York, 1981.

W. Buchholz and K. Schiitte. Proof Theory of Impredicative Subsystems of Analysis.
Bibliopolis, Naples, 1988.

W. Buchholz. A new system of proof-theoretic ordinal functions. Ann. Pure a. Appl.
Logic, 32:195 — 207, 1986.

H. Schwichtenberg. Proofs as programs. In P. Aczel, H. Simmons, and S. S. Wainer,
editors, Proof Theory. A selection of papers from the Leeds Proof Theory Programme
1990, pages 79 — 113, Cambridge, 1992. Cambridge University Press.

A. Setzer. Ordinalzahlanalyse pradikativer Theorien unter Verwendung von Funda-
mentalfolgen. Master’s thesis, Universitat Miinchen, January 1990.

A. Setzer. Proof theoretical strength of Martin-Lof Type Theory with W-type and
one universe. PhD thesis, Universitat Miinchen, 1993.

14

